Advertisement

Plant and Soil

, Volume 321, Issue 1–2, pp 117–152 | Cite as

Rhizosphere: biophysics, biogeochemistry and ecological relevance

  • Philippe Hinsinger
  • A. Glyn Bengough
  • Doris Vetterlein
  • Iain M. Young
Review Article

Abstract

Life on Earth is sustained by a small volume of soil surrounding roots, called the rhizosphere. The soil is where most of the biodiversity on Earth exists, and the rhizosphere probably represents the most dynamic habitat on Earth; and certainly is the most important zone in terms of defining the quality and quantity of the Human terrestrial food resource. Despite its central importance to all life, we know very little about rhizosphere functioning, and have an extraordinary ignorance about how best we can manipulate it to our advantage. A major issue in research on rhizosphere processes is the intimate connection between the biology, physics and chemistry of the system which exhibits astonishing spatial and temporal heterogeneities. This review considers the unique biophysical and biogeochemical properties of the rhizosphere and draws some connections between them. Particular emphasis is put on how underlying processes affect rhizosphere ecology, to generate highly heterogeneous microenvironments. Rhizosphere ecology is driven by a combination of the physical architecture of the soil matrix, coupled with the spatial and temporal distribution of rhizodeposits, protons, gases, and the role of roots as sinks for water and nutrients. Consequences for plant growth and whole-system ecology are considered. The first sections address the physical architecture and soil strength of the rhizosphere, drawing their relationship with key functions such as the movement and storage of elements and water as well as the ability of roots to explore the soil and the definition of diverse habitats for soil microorganisms. The distribution of water and its accessibility in the rhizosphere is considered in detail, with a special emphasis on spatial and temporal dynamics and heterogeneities. The physical architecture and water content play a key role in determining the biogeochemical ambience of the rhizosphere, via their effect on partial pressures of O2 and CO2, and thereby on redox potential and pH of the rhizosphere, respectively. We address the various mechanisms by which roots and associated microorganisms alter these major drivers of soil biogeochemistry. Finally, we consider the distribution of nutrients, their accessibility in the rhizosphere, and their functional relevance for plant and microbial ecology. Gradients of nutrients in the rhizosphere, and their spatial patterns or temporal dynamics are discussed in the light of current knowledge of rhizosphere biophysics and biogeochemistry. Priorities for future research are identified as well as new methodological developments which might help to advance a comprehensive understanding of the co-occurring processes in the rhizosphere.

Keywords

Soil strength Soil structure Water potential pH Redox potential Nutrient availability 

Notes

Acknowledgements

The Scottish Crop Research Institute receives grant-in-aid support from the Scottish Government Rural and Environment Research and Analysis Directorate.

References

  1. Alami Y, Achouak W, Marol C, Heulin T (2000) Rhizophere soil aggregation and plant growth promotion of sunflowers by an exopolysaccharide-producing Rhizobium sp. Isolated from sunflower roots. Appl Environ Microbiol 66:3393–3398 doi: 10.1128/AEM.66.8.3393-3398.2000 PubMedCrossRefGoogle Scholar
  2. Anoua M, Jaillard B, Ruiz T, Bénet JC (1997) Couplages entre transferts de matière et réactions chimiques dans un sol. II. Application au transfert de matière dans la rhizosphère. Entropie 207:13–24Google Scholar
  3. Armstrong W (1979) Aeration in higher plants. Adv Bot Res 7:225–232 doi: 10.1016/S0065-2296(08)60089-0 CrossRefGoogle Scholar
  4. Armstrong W, Cousins D, Armstrong J, Turner DW, Becket PM (2000) Oxygen distribution in wetland plant roots and permeability barriers to gas-exchange with the rhizosphere: a microelectrode and modelling study with Phragmites australis. Ann Bot (Lond) 86:687–703 doi: 10.1006/anbo.2000.1236 CrossRefGoogle Scholar
  5. Barber SA (1995) Soil nutrient bioavailability: a mechanistic approach, 2nd edn. John Wiley, New York, USA, p 414Google Scholar
  6. Barber DA, Gunn KB (1974) The effect of mechanical forces on the exudation of organic substances by the roots of cereal plants. New Phytol 73:39–45 doi: 10.1111/j.1469-8137.1974.tb04604.x CrossRefGoogle Scholar
  7. Barrowclough DE, Peterson CA, Steudle E (2000) Radial hydraulic conductivity along developing onion roots. J Exp Bot 51:547–557 doi: 10.1093/jexbot/51.344.547 PubMedCrossRefGoogle Scholar
  8. Begg CBM, Kirk GJD, MacKenzie AF, Neue H-U (1994) Root-induced iron oxidation and pH changes in the lowland rice rhizosphere. New Phytol 128:469–477 doi: 10.1111/j.1469-8137.1994.tb02993.x CrossRefGoogle Scholar
  9. Bengough AG, Mullins CE (1990) Mechanical impedance to root growth - a review of experimental techniques and root growth responses. J Soil Sci 41:341–358Google Scholar
  10. Bengough AG, Bransby MF, Hans J, McKenna SJ, Roberts TJ, Valentine TA (2006) Root responses to soil physical conditions; growth dynamics from field to cell. J Exp Bot 57:437–447 doi: 10.1093/jxb/erj003 PubMedCrossRefGoogle Scholar
  11. Bertrand I, Hinsinger P, Jaillard B, Arvieu JC (1999) Dynamics of phosphorus in the rhizosphere of maize and rape grown on synthetic, phosphated calcite and goethite. Plant Soil 211:111–119 doi: 10.1023/A:1004328815280 CrossRefGoogle Scholar
  12. Bidel LPR, Renault P, Pages L, Riviere LM (2000) Mapping meristem respiration of Prunus persica (L.) Batsch seedlings: potential respiration of the meristems, O2 diffusional constraints and combined effects on root growth. J Exp Bot 51:755–768 doi: 10.1093/jexbot/51.345.755 PubMedCrossRefGoogle Scholar
  13. Binnerup SJ, Sorensen J (1992) Nitrate and nitrite microgradients in barley rhizosphere as detected by a highly sensitive denitrification bioassay. Appl Environ Microbiol 58:2375–2380PubMedGoogle Scholar
  14. Blossfeld S, Gansert D (2007) A novel non-invasive optical method for quantitative visualization of pH dynamics in the rhizosphere of plants. Plant Cell Environ 30:176–186 doi: 10.1111/j.1365-3040.2006.01616.x PubMedCrossRefGoogle Scholar
  15. Boeuf-Tremblay V, Plantureux S, Guckert A (1995) Influence of mechanical impedance on root exudation of maize seedlings at two development stages. Plant Soil 172:279–287 doi: 10.1007/BF00011330 CrossRefGoogle Scholar
  16. Bonkowski M (2004) Protozoa and plant growth: the microbial loop in soil revisited. New Phytol 162:617–631 doi: 10.1111/j.1469-8137.2004.01066.x CrossRefGoogle Scholar
  17. Bonkowski M, Griffiths B, Villenave C (2009) Rhizosphere fauna: functional and structural diversity. Plant Soil (this volume, in preparation, provisional title)Google Scholar
  18. Bravin MN, Travassac F, Le Floch M, Hinsinger P, Garnier JM (2008) Oxygen input controls the spatial and temporal dynamics of arsenic at the surface of a flooded paddy soil and in the rhizosphere of lowland rice (Oryza sativa L.): a microcosm study. Plant Soil 312:207–218 doi: 10.1007/s11104-007-9532-x CrossRefGoogle Scholar
  19. Bruand A, Cousin I, Nicoullaud B, Duval O, Bégon JC (1996) Backscattered electron scanning images of soil porosity for analysing soil compaction around roots. Soil Sci Soc Am J 60:895–901Google Scholar
  20. Brune A, Frenzel P, Cypionka H (2000) Life at the oxic-anoxic interface: microbial activities and adaptations. FEMS Microbiol Rev 24:691–710PubMedGoogle Scholar
  21. Bundt M, Widmer F, Pesaro M, Zeyer J, Blaser P (2001) Preferential flow paths: biological ‘hot spots’ in soils. Soil Biol Biochem 33:729–738 doi: 10.1016/S0038-0717(00)00218-2 CrossRefGoogle Scholar
  22. Burgess SSO, Pate JS, Adams MA, Dawson TE (2000) Seasonal water acquisition and redistribution in the Australian woody phreatophyte, Banksia prionotes. Ann Bot (Lond) 85:215–224 doi: 10.1006/anbo.1999.1019 CrossRefGoogle Scholar
  23. Caldwell MM, Dawson TE, Richards JH (1998) Hydraulic lift: consequences of water efflux from the roots of plants. Oecologia 113:151–161 doi: 10.1007/s004420050363 CrossRefGoogle Scholar
  24. Callaway RM, King L (1996) Temperature-driven variation in substrate oxygenation and the balance of competition and facilitation. Ecology 77:1189–1195 doi: 10.2307/2265588 CrossRefGoogle Scholar
  25. Callaway RM, Walker LR (1997) Competition and facilitation: a synthetic approach to interactions in plant communities. Ecology 78:1958–1965CrossRefGoogle Scholar
  26. Callaway RM, Brooker RW, Choler P, Kikvidze Z, Lortie CJ, Michalet R, Paolini L, Pugnaire FL, Newingham B, Aschehoug ET, Armas C, Kikodze D, Cook BJ (2002) Positive interactions among alpine plants increase with stress. Nature 417:844–848 doi: 10.1038/nature00812 PubMedCrossRefGoogle Scholar
  27. Callaway RM, Pennings SC, Richards CL (2003) Phenotypic plasticity and interactions among plants. Ecology 84:1115–1128 doi: 10.1890/0012-9658(2003)084[1115:PPAIAP]2.0.CO;2 CrossRefGoogle Scholar
  28. Calvaruso C, Turpault MP, Frey-Klett P (2006) Root-associated bacteria contribute to mineral weathering and to mineral nutrition in trees: a budgeting analysis. Appl Environ Microbiol 72:1258–1266 doi: 10.1128/AEM.72.2.1258-1266.2006 PubMedCrossRefGoogle Scholar
  29. Calvaruso C, Turpault MP, Leclerc E, Frey-Klett P (2007) Impact of ectomycorrhizosphere on the functional diversity of soil bacterial and fungal communities from a forest stand in relation to nutrient mobilization processes. Microb Ecol 54:567–577 doi: 10.1007/s00248-007-9260-z PubMedCrossRefGoogle Scholar
  30. Caravaca F, Alguacil MM, Torres P, Roldan A (2005) Plant type mediates rhizospheric microbial activities and soil aggregation in a semiarid Mediterranean salt marsh. Geoderma 124:375–382 doi: 10.1016/j.geoderma.2004.05.010 CrossRefGoogle Scholar
  31. Casarin V, Plassard C, Souche G, Arvieu JC (2003) Quantification of oxalate ions and protons released by ectomycorrhizal fungi in rhizosphere soil. Agronomie 23:461–469 doi: 10.1051/agro:2003020 CrossRefGoogle Scholar
  32. Casarin V, Plassard C, Hinsinger P, Arvieu JC (2004) Quantification of ectomycorrhizal fungal effects on the bioavailability and mobilisation of soil P in the rhizosphere of Pinus pinaster. New Phytol 163:177–185 doi: 10.1111/j.1469-8137.2004.01093.x CrossRefGoogle Scholar
  33. Chapin FS, Moilanen L, Kielland K (1993) Preferential use of organic nitrogen for growth by a non-mycorrhizal arctic sedge. Nature 361:1550–1553 doi: 10.1038/361150a0 CrossRefGoogle Scholar
  34. Chen CR, Condron LM, Davis MR, Sherlock RR (2002) Phosphorus dynamics in the rhizosphere of perennial ryegrass (Lolium perenne L.) and radiata pine (Pinus radiata d. don.). Soil Biol Biochem 34:487–499 doi: 10.1016/S0038-0717(01)00207-3 CrossRefGoogle Scholar
  35. Cheng Y, Howieson JG, O’Hara GW, Watkin ELJ, Souche G, Jaillard B, Hinsinger P (2004) Proton release by roots of Medicago murex and Medicago sativa growing in acidic conditions, and implications for rhizosphere pH changes and nodulation at low pH. Soil Biol Biochem 36:1357–1365 doi: 10.1016/j.soilbio.2004.04.017 CrossRefGoogle Scholar
  36. Claassen N, Syring KM, Jungk A (1986) Verification of a mathematical model by simulating potassium uptake from soil. Plant Soil 95:209–220 doi: 10.1007/BF02375073 CrossRefGoogle Scholar
  37. Clarkson DT (1991) Root structure and sites of ion uptake. In: Waisel Y, Eshel A, Kafkafi U (eds) Plant Roots – the Hidden Half. Marcel Dekker, Inc., New York, USA, pp 417–453Google Scholar
  38. Clarkson DT, Robards AW, Sanderson J (1971) The tertiary endodermis in barley roots: fine structure in relation to radial transport of ions and water. Planta 96:292–305 doi: 10.1007/BF00386944 CrossRefGoogle Scholar
  39. Clegg S, Gobran GR (1997) Rhizospheric P and K in forest soil manipulated with ammonium sulfate and water. Can J Soil Sci 77:525–533Google Scholar
  40. Cornu JY, Staunton S, Hinsinger P (2007) Copper concentration in plants and in the rhizosphere as influenced by the iron status of tomato (Lycopersicum esculentum L.). Plant Soil 292:63–77 doi: 10.1007/s11104-007-9202-z CrossRefGoogle Scholar
  41. Courchesne F, Gobran GR (1997) Mineralogical variation of bulk and rhizosphere soils from a Norway spruce stand. Soil Sci Soc Am J 61:1245–1249Google Scholar
  42. Craine JM, Fargione J, Sugita S (2005) Supply pre-emption, not concentration reduction, is the mechanism of competition for nutrients. New Phytol 166:933–940 doi: 10.1111/j.1469-8137.2005.01386.x PubMedCrossRefGoogle Scholar
  43. Crawford JW, Harris JA, Ritz K, Young IM (2005) Towards an evolutionary ecology of life in soil. Trends Ecol Evol 20:81–86 doi: 10.1016/j.tree.2004.11.014 PubMedCrossRefGoogle Scholar
  44. Curtis TP, Sloan WT (2005) Exploring microbial diversity-A vast below. Science 309:1331–1333 doi: 10.1126/science.1118176 PubMedCrossRefGoogle Scholar
  45. Curtis TP, Sloan WT, Scannell JW (2002) Estimating prokaryotic diversity and its limits. Proc Natl Acad Sci USA 99:10494–10499 doi: 10.1073/pnas.142680199 PubMedCrossRefGoogle Scholar
  46. Czarnes S, Hiller S, Dexter AR, Hallett PD, Bartoli F (1999) Root:soil adhesion in the maize rhizosphere: the rheological approach. Plant Soil 211:69–86 doi: 10.1023/A:1004656510344 CrossRefGoogle Scholar
  47. Czarnes S, Hallett PD, Bengough AG, Young IM (2000) Root- and microbial-derived mucilages affect soil structure and water transport. Eur J Soil Sci 51:435–443 doi: 10.1046/j.1365-2389.2000.00327.x CrossRefGoogle Scholar
  48. Darrah PR (1991) Models of the rhizosphere. I. Microbial population dynamics around a root releasing soluble and insoluble carbon. Plant Soil 133:187–199 doi: 10.1007/BF00009191 CrossRefGoogle Scholar
  49. Darrah PR (1993) The rhizosphere and plant nutrition: a quantitative approach. Plant Soil 155/156:1–20 doi: 10.1007/BF00024980 CrossRefGoogle Scholar
  50. Degenhardt J, Larsen PB, Howell SH, Kochian LV (1998) Aluminum resistance in the Arabidopsis mutant alr-104 is caused by an aluminum-induced increase in rhizosphere pH. Plant Physiol 117:19–27 doi: 10.1104/pp.117.1.19 PubMedCrossRefGoogle Scholar
  51. Denton MD, Sasse C, Tibbett M, Ryan MH (2006) Root distributions of Australian herbaceous perennial legumes in response to phosphorus placement. Funct Plant Biol 33:1091–1102 doi: 10.1071/FP06176 CrossRefGoogle Scholar
  52. Dessureault-Rompré J, Nowack B, Schulin R, Luster J (2007) Spatial and temporal variation in organic acid anion exudation and nutrient anion uptake in the rhizosphere of Lupinus albus L. Plant Soil 301:123–134 doi: 10.1007/s11104-007-9427-x CrossRefGoogle Scholar
  53. Dexter AR (1987) Compression of soil around roots. Plant Soil 97:401–406 doi: 10.1007/BF02383230 CrossRefGoogle Scholar
  54. Doussan C, Pagès L, Pierret A (2003) Soil exploration and resource acquisition by plant roots: an architectural and modelling point of view. Agronomie 23:419–431 doi: 10.1051/agro:2003027 CrossRefGoogle Scholar
  55. Doussan C, Pierret A, Garrigues E, Pages L (2006) Water uptake by plant roots: II-Modelling of water transfer in the soil root-system with explicit account of flow within the root system-Comparison with experiments. Plant Soil 283:99–117 doi: 10.1007/s11104-004-7904-z CrossRefGoogle Scholar
  56. Dunbabin VM, McDermott S, Bengough AG (2006) Upscaling from rhizosphere to whole root system: modelling the effects of phospholipid surfactants on water and nutrient uptake. Plant Soil 283:57–72 doi: 10.1007/s11104-005-0866-y CrossRefGoogle Scholar
  57. Dutton MV, Evans CS (1996) Oxalate production by fungi: its role in pathogenicity and ecology in the soil environment. Can J Microbiol 42:881–895 doi: 10.1139/m96-114 CrossRefGoogle Scholar
  58. El Sebai T, Lagacherie B, Soulas G, Martin-Laurent F (2007) Spatial variability of isoproturon mineralizing activity within an agricultural field: geostatistical analysis of simple physicochemical and microbiological soil parameters. Environ Pollut 145:680–690 doi: 10.1016/j.envpol.2006.05.034 PubMedCrossRefGoogle Scholar
  59. Ernst M, Römheld V, Marschner H (1989) Estimation of phosphorus uptake capacity by different zones of the primary root of soil-grown maize (Zea mays L.). J Plant Nutr Soil Sci 152:21–25 doi: 10.1002/jpln.19891520105 CrossRefGoogle Scholar
  60. Farr E, Vaidyanathan LV, Nye PH (1969) Measurement of ionic concentration gradients in soil near roots. Soil Sci 107:385–391 doi: 10.1097/00010694-196905000-00012 CrossRefGoogle Scholar
  61. Feddes RA, Hoff H, Bruen M, Dawson T, de Rosnay P, Dirmeyer O, Jackson RB, Kabat P, Kleidon A, Lilly A, Pitman AJ (2001) Modeling root water uptake in hydrological and climate models. Bull Am Meteorol Soc 82:2797–2809 doi: 10.1175/1520-0477(2001)082<2797:MRWUIH>2.3.CO;2 CrossRefGoogle Scholar
  62. Feeney DS, Crawford JW, Daniell T, Hallett PD, Nunan N, Ritz K, Rivers M, Young IM (2006) Three-dimensional microorganisation of the soil-root-microbe system. Microb Ecol 52:151–158 doi: 10.1007/s00248-006-9062-8 PubMedCrossRefGoogle Scholar
  63. Ferguson IB, Clarkson DT (1975) Ion transport and endodermal suberization in the roots of Zea mays. New Phytol 75:69–79 doi: 10.1111/j.1469-8137.1975.tb01372.x CrossRefGoogle Scholar
  64. Fierer N, Jackson RB (2006) The diversity and biogeography of soil bacterial communities. Proc Natl Acad Sci USA 103:626–631 doi: 10.1073/pnas.0507535103 PubMedCrossRefGoogle Scholar
  65. Fischer WR, Flessa H, Schaller G (1989) pH values and redox potentials in microsites of the rhizosphere. Z Pflanzenern Bodenkd 152:191–195 doi: 10.1002/jpln.19891520209 CrossRefGoogle Scholar
  66. Fitter AH, Williamson L, Linkohr B, Leyser O (2002) Root system architecture determines fitness in an Arabidopsis mutant in competition for immobile phosphate ions but not for nitrate ions. Proc R Soc Lond B Biol Sci 269:2017–2022 doi: 10.1098/rspb.2002.2120 CrossRefGoogle Scholar
  67. Flessa H, Fischer WR (1992) Plant-induced changes in the redox potentials of rice rhizospheres. Plant Soil 143:55–60 doi: 10.1007/BF00009128 CrossRefGoogle Scholar
  68. Focht DD (1992) Diffusional constraints on microbial processes in soil. Soil Sci 154:300–307 doi: 10.1097/00010694-199210000-00006 CrossRefGoogle Scholar
  69. Frensch J, Steudle E (1989) Axial and radial hydraulic resistance to roots of maize (Zea mays L.). Plant Physiol 91:719–726PubMedCrossRefGoogle Scholar
  70. Frensch J, Hsiao TC, Steudle E (1996) Water and solute transport along developing maize roots. Planta 198:348–355 doi: 10.1007/BF00620050 CrossRefGoogle Scholar
  71. Gahoonia TS, Claassen N, Jungk A (1992) Mobilization of phosphate in different soils by ryegrass supplied with ammonium or nitrate. Plant Soil 140:241–248 doi: 10.1007/BF00010600 CrossRefGoogle Scholar
  72. Gahoonia TS, Nielsen NE, Joshi PA, Jahoor A (2001) A root hairless barley mutant for elucidating genetic of root hairs and phosphorus uptake. Plant Soil 235:211–219 doi: 10.1023/A:1011993322286 CrossRefGoogle Scholar
  73. Gardner WR (1960) Dynamic aspects of water availability to plants. Soil Sci 89:63–73 doi: 10.1097/00010694-196002000-00001 CrossRefGoogle Scholar
  74. Garrigues E, Doussan C, Pierret A (2006) Water uptake by plant roots: I. Formation and propagation of a water extraction front in mature root systems as evidenced by 2D light transmission imaging. Plant Soil 283:83–98 doi: 10.1007/s11104-004-7903-0 CrossRefGoogle Scholar
  75. Ge Z, Rubio G, Lynch JP (2000) The importance of root gravitropism for inter-root competition and phosphorus acquisition efficiency: results from a geometric simulation model. Plant Soil 218:159–171 doi: 10.1023/A:1014987710937 PubMedCrossRefGoogle Scholar
  76. Geelhoed JS, van Riemsdijk WH, Findenegg GR (1999) Simulation of the effect of citrate exudation from roots on the plant availability of phosphate adsorbed on goethite. Eur J Soil Sci 50:379–390 doi: 10.1046/j.1365-2389.1999.00251.x CrossRefGoogle Scholar
  77. George TS, Gregory PJ, Robinson JS, Buresh RJ (2002a) Changes in phosphorus concentrations and pH in the rhizosphere of some agroforestry and crop species. Plant Soil 246:65–73 doi: 10.1023/A:1021523515707 CrossRefGoogle Scholar
  78. George TS, Gregory PJ, Wood M, Read DJ, Buresh RJ (2002b) Phosphatase activity and organic acids in the rhizosphere of potential agroforestry species and maize. Soil Biol Biochem 34:1487–1494 doi: 10.1016/S0038-0717(02)00093-7 CrossRefGoogle Scholar
  79. George TS, Richardson AE, Hadobas PA, Simpson RJ (2004) Characterization of transgenic Trifolium subterraneum L. which expresses phyA and releases extracellular phytase: growth and P nutrition in laboratory media and soil. Plant Cell Environ 27:1351–1361 doi: 10.1111/j.1365-3040.2004.01225.x CrossRefGoogle Scholar
  80. George TS, Richardson AE, Simpson RJ (2005) Behaviour of plant-derived extracellular phytase upon addition to soil. Soil Biol Biochem 37:977–978 doi: 10.1016/j.soilbio.2004.10.016 CrossRefGoogle Scholar
  81. George TS, Turner BL, Gregory PJ, Richardson AE (2006) Depletion of organic phosphorus from oxisols in relation to phosphatase activities in the rhizosphere. Eur J Soil Sci 57:47–57 doi: 10.1111/j.1365-2389.2006.00767.x CrossRefGoogle Scholar
  82. Gerke J, Beissner L, Römer W (2000) The quantitative effect of chemical phosphate mobilization by carboxylate anions on P uptake by a single root. I. The basic concept and determination of soil parameters. J Plant Nutr Soil Sci 163:207–212 doi: <207::AID-JPLN207>3.0.CO;2-P CrossRefGoogle Scholar
  83. Gollany HT, Schumacher TE, Rue RR, Liu S-Y (1993) A carbon dioxide microelectrode for in situ pCO2 measurement. Microchem J 48:42–49 doi: 10.1006/mchj.1993.1069 CrossRefGoogle Scholar
  84. Göttlein A, Matzner E (1997) Microscale heterogeneity of acidity related stress-parameters in the soil solution of a forested cambic podzol. Plant Soil 192:95–105 doi: 10.1023/A:1004260006503 CrossRefGoogle Scholar
  85. Göttlein A, Hell U, Blasek R (1996) A system for microscale tensiometry and lysimetry. Geoderma 69:147–156 doi: 10.1016/0016-7061(95)00059-3 CrossRefGoogle Scholar
  86. Göttlein A, Heim A, Matzner E (1999) Mobilization of aluminium in the rhizosphere soil solution of growing tree roots in an acidic soil. Plant Soil 211:41–49 doi: 10.1023/A:1004332916188 CrossRefGoogle Scholar
  87. Greacen EL, Barley KP, Farrell DA (1969) The mechanics of root growth in soils with particular reference to the implications for root distribution. In: Whitington WJ (ed) Root growth. Butterworths, London, UK, pp 256–268Google Scholar
  88. Greenway H, Armstrong W, Colmer TD (2006) Conditions leading to high CO2 (>5 kPa) in waterlogged-flooded soils and possible effects on root growth and metabolism. Ann Bot (Lond) 98:9–32 doi: 10.1093/aob/mcl076 CrossRefGoogle Scholar
  89. Gregory PJ (2006) Roots, rhizosphere, and soil: the route to a better understanding of soil science? Eur J Soil Sci 57:2–12 doi: 10.1111/j.1365-2389.2005.00778.x CrossRefGoogle Scholar
  90. Gregory PJ, Hinsinger P (1999) New approaches to studying chemical and physical changes in the rhizosphere: an overview. Plant Soil 211:1–9 doi: 10.1023/A:1004547401951 CrossRefGoogle Scholar
  91. Gross N, Suding KN, Lavorel S, Roumet C (2007) Complementarity as a mechanism of coexistence between functional groups of grasses. J Ecol 95:1296–1305 doi: 10.1111/j.1365-2745.2007.01303.x CrossRefGoogle Scholar
  92. Guinel FC, McCully ME (1986) Some water-related physical properties of maize root-cap mucilage. Plant Cell Environ 9:657–666 doi: 10.1111/j.1365-3040.1986.tb01624.x CrossRefGoogle Scholar
  93. Hainsworth JM, Aylmore LAG (1989) Non-uniform soil water extraction by plant roots. Plant Soil 113:121–124 doi: 10.1007/BF02181929 CrossRefGoogle Scholar
  94. Hallett PD, Gordon DC, Bengough AG (2003) Plant influence on rhizosphere hydraulic properties: direct measurements using a miniaturized infiltrometer. New Phytol 157:597–603 doi: 10.1046/j.1469-8137.2003.00690.x CrossRefGoogle Scholar
  95. Harrison-Murray RS, Clarkson DT (1973) Relationship between structural development and the absorption of ions by the root system of Cucurbita pepo. Planta 114:1–16 doi: 10.1007/BF00390280 CrossRefGoogle Scholar
  96. Hartmann A, Rothballer M, Schmid M (2008) Lorenz Hiltner, a pioneer in rhizosphere microbial ecology and soil bacteriology research. Plant Soil 312:7–14 doi: 10.1007/s11104-007-9514-z CrossRefGoogle Scholar
  97. Häussling M, Leisen E, Marschner H, Römheld V (1985) An improved method for non-destructive measurements of the pH at the root–soil interface (rhizosphere). J Plant Physiol 117:371–375Google Scholar
  98. Häussling M, Jorns CA, Lehmbecker G, Hecht-Buchholz C, Marschner H (1988) Ion and water uptake in relation to root development in Norway spruce (Picea abies (L.) Karst.). J Plant Physiol 133:486–491Google Scholar
  99. Hawkins BJ, Boukcim H, Plassard C (2008) A comparison of ammonium, nitrate and proton net fluxes along seedling roots of Douglas-fir and lodgepole pine grown and measured with different inorganic nitrogen sources. Plant Cell Environ 31:278–287 doi: 10.1111/j.1365-3040.2007.01760.x PubMedCrossRefGoogle Scholar
  100. Haynes RJ, Beare MH (1997) Influence of six crop species on aggregate stability and some labile organic matter fractions. Soil Biol Biochem 29:1647–1653 doi: 10.1016/S0038-0717(97)00078-3 CrossRefGoogle Scholar
  101. Hendriks L, Claassen N, Jungk A (1981) Phosphatverarmung des wurzelnahen Bodens und Phosphataufnahme von Mais und Raps. Z Pflanzenern Bodenkd 144:486–499 doi: 10.1002/jpln.19811440507 CrossRefGoogle Scholar
  102. Henzler T, Waterhouse RN, Smyth AJ, Carvajal M, Cooke DT, Schäffner AR, Steudle E, Clarkson DT (1999) Diurnal variations in hydraulic conductivity and root pressure can be correlated with the expression of putative aquaporins in the roots of Lotus japonicus. Planta 210:50–60 doi: 10.1007/s004250050653 PubMedCrossRefGoogle Scholar
  103. Herman DJ, Johnson KK, Jaeger CH III, Schwartz E, Firestone MK (2006) Root influence on nitrogen mineralization and nitrification in Avena barbata rhizosphere soil. Soil Sci Soc Am J 70:1504–1511 doi: 10.2136/sssaj2005.0113 CrossRefGoogle Scholar
  104. Hiltner L (1904) Über neuere Erfahrungen und Probleme auf dem Gebiete der Bodenbakteriologie unter besonderer Berücksichtigung der Gründüngung und Brache. Arb DLG 98:59–78Google Scholar
  105. Hinsinger P (1998) How do plant roots acquire mineral nutrients? Chemical processes involved in the rhizosphere. Adv Agron 64:225–265 doi: 10.1016/S0065-2113(08)60506-4 CrossRefGoogle Scholar
  106. Hinsinger P (2001) Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: a review. Plant Soil 237:173–195 doi: 10.1023/A:1013351617532 CrossRefGoogle Scholar
  107. Hinsinger P (2004) Nutrient availability and transport in the rhizosphere. In: Goodman RM (ed) Encyclopedia of Plant and Crop Science. Marcel Dekker, Inc., New York, USA, pp 1094–1097Google Scholar
  108. Hinsinger P, Gilkes RJ (1996) Mobilization of phosphate from phosphate rock and alumina-sorbed phosphate by the roots of ryegrass and clover as related to rhizosphere pH. Eur J Soil Sci 47:533–544 doi: 10.1111/j.1365-2389.1996.tb01853.x CrossRefGoogle Scholar
  109. Hinsinger P, Elsass F, Jaillard B, Robert M (1993) Root-induced irreversible transformation of a trioctahedral mica in the rhizosphere of rape. Eur J Soil Sci 44:535–545 doi: 10.1111/j.1365-2389.1993.tb00475.x CrossRefGoogle Scholar
  110. Hinsinger P, Plassard C, Tang C, Jaillard B (2003) Origins of root-induced pH changes in the rhizosphere and their responses to environmental constraints: a review. Plant Soil 248:43–59 doi: 10.1023/A:1022371130939 CrossRefGoogle Scholar
  111. Hinsinger P, Gobran GR, Gregory PJ, Wenzel WW (2005) Rhizosphere geometry and heterogeneity arising from root-mediated physical and chemical processes. New Phytol 168:293–303 doi: 10.1111/j.1469-8137.2005.01512.x PubMedCrossRefGoogle Scholar
  112. Hobbie SE (1992) Effects of plant-species on nutrient cycling. Trends Ecol Evol 7:336–339 doi: 10.1016/0169-5347(92)90126-V CrossRefGoogle Scholar
  113. Hodge A (2004) The plastic plant: root responses to heterogenous supplies of nutrients. New Phytol 162:9–24 doi: 10.1111/j.1469-8137.2004.01015.x CrossRefGoogle Scholar
  114. Hodge A, Berta G, Crespi M, Doussan C (2009) Plant roots: growth and architecture. Plant Soil (this volume, in preparation, provisional title)Google Scholar
  115. Hojberg O, Binnerup SJ, Sorensen J (1996) Potential rates of ammonium oxidation, nitrite oxidation, nitrate reduction and denitrification in the young barley rhizosphere. Soil Biol Biochem 28:47–54 doi: 10.1016/0038-0717(95)00119-0 CrossRefGoogle Scholar
  116. Hübel F, Beck E (1993) In-situ determination of the P-relations around the primary root of maize with respect to inorganic and phytate-P. Plant Soil 157:1–9Google Scholar
  117. Huck MG, Klepper B, Taylor HM (1970) Diurnal variation in root diameter. Plant Physiol 45:529–530PubMedCrossRefGoogle Scholar
  118. Humphris SN, Bengough AG, Griffiths BS, Kilham K, Rodger S, Stubbs V, Valentine TA, Young IM (2005) Root cap influences root colonisation by Pseudomonas fluorescens SBW25 on maize. FEMS Microbiol Ecol 54:123–130 doi: 10.1016/j.femsec.2005.03.005 PubMedCrossRefGoogle Scholar
  119. Iijima M, Griffiths B, Bengough AG (2000) Sloughing of cap cells and carbon exudation from maize seedling roots in compacted sand. New Phytol 145:477–482 doi: 10.1046/j.1469-8137.2000.00595.x CrossRefGoogle Scholar
  120. Iijima M, Higuchi T, Barlow PW, Bengough AG (2003) Root cap removal increases root penetration resistance in maize (Zea mays L.). J Exp Bot 54:2105–2109 doi: 10.1093/jxb/erg226 PubMedCrossRefGoogle Scholar
  121. Iijima M, Higuchi T, Barlow PW (2004) Contribution of root cap mucilage and presence of an intact root cap in maize (Zea mays) to the reduction of soil mechanical impedance. Ann Bot (Lond) 94:473–477 doi: 10.1093/aob/mch166 CrossRefGoogle Scholar
  122. Jackson RB, Sperry JS, Dawson TE (2000) Root water uptake and transport: using physiological processes in global predictions. Trends Plant Sci 5:482–488 doi: 10.1016/S1360-1385(00)01766-0 PubMedCrossRefGoogle Scholar
  123. Jaillard B, Ruiz L, Arvieu JC (1996) pH mapping in transparent gel using color indicator videodensitometry. Plant Soil 183:85–95 doi: 10.1007/BF02185568 CrossRefGoogle Scholar
  124. Jaillard B, Plassard C, Hinsinger P (2003) Measurements of H+ fluxes and concentrations in the rhizosphere. In: Rengel Z (ed) Handbook of Soil Acidity. Marcel Dekker, Inc., New York, USA, pp 231–266Google Scholar
  125. Jones DL (1998) Organic acids in the rhizosphere-a critical review. Plant Soil 205:25–44 doi: 10.1023/A:1004356007312 CrossRefGoogle Scholar
  126. Jones DL, Darrah PR (1994) Role of root derived organic acids in the mobilization of nutrients from the rhizosphere. Plant Soil 166:247–257 doi: 10.1007/BF00008338 CrossRefGoogle Scholar
  127. Jones DL, Hinsinger P (2008) The rhizosphere: complex by design. Plant Soil 312:1–6 doi: 10.1007/s11104-008-9774-2 CrossRefGoogle Scholar
  128. Jones DL, Hodge A, Kuzyakov Y (2004) Plant and mycorrhizal regulation of rhizodeposition. New Phytol 163:459–480 doi: 10.1111/j.1469-8137.2004.01130.x CrossRefGoogle Scholar
  129. Jones DL, Nguyen C, Finlay RD (2009) Carbon flow in the rhizosphere: carbon trading at the soil-root interface. Plant Soil (this volume, in preparation)Google Scholar
  130. Jungk A (2002) Dynamics of nutrient movement at the soil-root interface. In: Waisel Y, Eshel A Kafkafi U (eds) Plant Roots: The Hidden Half, 3rd Ed. Marcel Dekker, Inc., New York, USA, pp 587–616Google Scholar
  131. Jungk A, Claassen N (1986) Availability of phosphate and potassium as the result of interactions between root and soil in the rhizosphere. J Plant Nutr Soil Sci 149:411–427 doi: 10.1002/jpln.19861490406 CrossRefGoogle Scholar
  132. Kabir Z, Koide RT (2000) The effect of dandelion or a cover crop on mycorrhiza inoculum potential, soil aggregation and yield of maize. Agric Ecosyst Environ 78:167–174 doi: 10.1016/S0167-8809(99)00121-8 CrossRefGoogle Scholar
  133. Kaci Ym Heyraund A, Barakat M, Heulin T (2005) Isolation and identification of an EPS-producing Rhizobium strain from arid soil (Algeria): characterisation of its EPS and the effect of inoculation on wheat Rhizosphere soil structure. Microbiol 156:522–531Google Scholar
  134. Kandeler E, Marschner P, Tscherko D, Gahoonia TS, Nielsen NE (2002) Microbial community composition and functional diversity in the rhizosphere of maize. Plant Soil 238:301–312 doi: 10.1023/A:1014479220689 CrossRefGoogle Scholar
  135. Karberg NJ, Pregitzer KS, King JS, Friend AL, Wood JR (2005) Soil carbon dioxide partial pressure and dissolved inorganic carbonate chemistry under elevated carbon dioxide and ozone. Oecologia 142:296–306 doi: 10.1007/s00442-004-1665-5 PubMedCrossRefGoogle Scholar
  136. Keerthisinghe G, Hocking PJ, Ryan PR, Delhaize E (1998) Effect of phosphorus supply on the formation and function of proteoid roots of white lupin (Lupinus albus L.). Plant Cell Environ 21:467–478 doi: 10.1046/j.1365-3040.1998.00300.x CrossRefGoogle Scholar
  137. Khalil K, Mary B, Renault P (2004) Nitrous oxide production by nitrification and denitrification in soil aggregates as affected by O2 concentration. Soil Biol Biochem 36:687–699 doi: 10.1016/j.soilbio.2004.01.004 CrossRefGoogle Scholar
  138. Kim TK, Silk WK, Cheer AY (1999) A mathematical model for pH patterns in the rhizospheres of growth zones. Plant Cell Environ 22:1527–1538 doi: 10.1046/j.1365-3040.1999.00512.x CrossRefGoogle Scholar
  139. Kinraide TB, Yermiyahu U (2007) A scale of metal ion binding strengths correlating with ionic charge, Pauling electronegativity, toxicity, and other physiological effects. J Inorg Biochem 101:1201–1213 doi: 10.1016/j.jinorgbio.2007.06.003 PubMedCrossRefGoogle Scholar
  140. Kirby JM, Bengough AG (2002) Influence of soil strength on root growth: experiments and analysis using a critical-state model. Eur J Soil Sci 53:119–127 doi: 10.1046/j.1365-2389.2002.00429.x CrossRefGoogle Scholar
  141. Kirk GJD (1999) A model of phosphate solubilization by organic anion excretion from plant roots. Eur J Soil Sci 50:369–378 doi: 10.1046/j.1365-2389.1999.00239.x CrossRefGoogle Scholar
  142. Kirk GJD (2002) Modelling root-induced solubilization of nutrients. Plant Soil 255:49–57 doi: 10.1023/A:1020667416624 CrossRefGoogle Scholar
  143. Kirk GJD, Bajita JB (1995) Root-induced iron oxidation, pH changes and zinc solubilization in the rhizosphere of lowland rice. New Phytol 131:129–137 doi: 10.1111/j.1469-8137.1995.tb03062.x CrossRefGoogle Scholar
  144. Kirk GJD, Le Van Du (1997) Changes in rice root architecture, porosity, and oxygen and proton release under phosphorus deficiency. New Phytol 135:191–200 doi: 10.1046/j.1469-8137.1997.00640.x CrossRefGoogle Scholar
  145. Kirk GJD, Kronzucker HJ (2005) The potential for nitrification and nitrate uptake in the rhizosphere of wetland plants: a modelling study. Ann Bot (Lond) 96:639–646 doi: 10.1093/aob/mci216 CrossRefGoogle Scholar
  146. Kopittke PM, Menzies NW (2004) Effect of Mn deficiency and legume inoculation on rhizosphere pH in highly alkaline soils. Plant Soil 262:13–21 doi: 10.1023/B:PLSO.0000037023.18127.7a CrossRefGoogle Scholar
  147. Kramer PJ, Boyer JS (1995) Water Relations of Plants and Soils. Academic Press, San Diego, USA, p 495Google Scholar
  148. Kuchenbuch R, Jungk A (1982) A method for determining concentration profiles at the soil-root interface by thin slicing rhizospheric soil. Plant Soil 68:391–394 doi: 10.1007/BF02197944 CrossRefGoogle Scholar
  149. Kuzyakov Y (2002) Review: factors affecting rhizosphere priming effects. J Plant Nutr Soil Sci 165:382–396 doi: <382::AID-JPLN382>3.0.CO;2-# CrossRefGoogle Scholar
  150. Lambers H, Chapin SF, Pons T (1998) Plant physiological ecology. Springer, New YorkGoogle Scholar
  151. Lambers H, Shane MW, Cramer MD, Pearse SJ, Veneklaas EJ (2006) Root structure and functioning for efficient acquisition of phosphorus: matching morphological and physiological traits. Ann Bot (Lond) 98:693–713 doi: 10.1093/aob/mcl114 CrossRefGoogle Scholar
  152. Lambers H, Mougel C, Jaillard B, Hinsinger P (2009) Plant-microbe-soil interactions in the rhizosphere: an evolutionary perspective. Plant Soil (this volume, in preparation, provisional title)Google Scholar
  153. Le Bot J, Kirkby EA (1992) Diurnal uptake of nitrate and potassium during the vegetative growth of tomato. J Plant Nutr 15:247–264 doi: 10.1080/01904169209364316 CrossRefGoogle Scholar
  154. Le Bot J, Alloush GA, Kirkby EA, Sanders FE (1990) Mineral nutrition of chickpea plants supplied with NO3 or NH4–N. II. Ionic balance in relation to phosphorus stress. J Plant Nutr 13:1591–1605 doi: 10.1080/01904169009364177 CrossRefGoogle Scholar
  155. Lemcoff JH, Ling F, Neumann PM (2006) Short episodes of water stress increase barley root resistance to radial shrinkage in a dehydrating environment. Physiol Plant 127:603–611 doi: 10.1111/j.1399-3054.2006.00688.x CrossRefGoogle Scholar
  156. Lemanceau P, Kraemer SM, Briat JF (2009) Iron in the rhizosphere: a case study. Plant Soil (this volume, in preparation, provisional title)Google Scholar
  157. Lesturgez G, Poss R, Hartmann C, Bourdon E, Noble A, Ratana-Anupap S (2004) Roots of Stylosanthes hamata create macropores in the compact layer of a sandy soil. Plant Soil 260:101–109 doi: 10.1023/B:PLSO.0000030184.24866.aa CrossRefGoogle Scholar
  158. Leyser O, Fitter A (1998) Roots are branching out in patches. Trends Plant Sci 3:203–204 doi: 10.1016/S1360-1385(98)01253-9 CrossRefGoogle Scholar
  159. Li X-L, George E, Marschner H (1991) Extension of the phosphorus depletion zone in VA-mycorrhizal white clover in a calcareous soil. Plant Soil 136:41–48 doi: 10.1007/BF02465218 CrossRefGoogle Scholar
  160. Li SM, Li L, Zhang FS, Tang C (2004) Acid phosphatase role in chickpea/maize intercropping. Ann Bot (Lond) 94:297–303 doi: 10.1093/aob/mch140 CrossRefGoogle Scholar
  161. Li L, Li SM, Sun JH, Zhou LL, Bao XG, Zhang HG, Zhang FS (2007) Diversity enhances agricultural productivity via rhizosphere phosphorus facilitation on phosphorus-deficient soils. Proc Natl Acad Sci USA 104:11192–11196 doi: 10.1073/pnas.0704591104 PubMedCrossRefGoogle Scholar
  162. Li H, Shen J, Zhang F, Clairotte M, Drevon JJ, Le Cadre E, Hinsinger P (2008) Dynamics of phosphorus fractions in the rhizosphere of common bean (Phaseolus vulgaris L.) and durum wheat (Triticum turgidum durum L.) grown in monocropping and intercropping systems. Plant Soil 312:139–150 doi: 10.1007/s11104-007-9512-1 CrossRefGoogle Scholar
  163. Linkohr BI, Williamson LC, Fitter AH, Leyser HMO (2002) Nitrate and phosphate availability and distribution have different effects on root system architecture of Arabidopsis. Plant J 29:751–760 doi: 10.1046/j.1365-313X.2002.01251.x PubMedCrossRefGoogle Scholar
  164. Loosemore N, Straczek A, Hinsinger P, Jaillard B (2004) Zinc mobilization from a contaminated soil by three genotypes of tobacco as affected by soil and rhizosphere pH. Plant Soil 260:19–32 doi: 10.1023/B:PLSO.0000030173.71500.e1 CrossRefGoogle Scholar
  165. Lorenz SE, Hamon RE, McGrath SP (1994) Differences between soil solutions obtained from rhizosphere and non-rhizosphere soils by water displacement and soil centrifugation. Eur J Soil Sci 45:431–438 doi: 10.1111/j.1365-2389.1994.tb00528.x CrossRefGoogle Scholar
  166. Luster J, Göttlein A, Nowack B, Sarret G (2009) Sampling, defining, characterising and modeling the rhizosphere – The soil science tool box. Plant Soil (this volume, in preparation)Google Scholar
  167. Lynch JM, Whipps JM (1990) Substrate flow in the rhizosphere. Plant Soil 129:1–10 doi: 10.1007/BF00011685 CrossRefGoogle Scholar
  168. Ma Z, Walk TC, Marcus A, Lynch JP (2001) Morphological synergism in root hair length, density, initiation and geometry for phosphorus acquisition in Arabidopsis thaliana: a modeling approach. Plant Soil 236:221–235 doi: 10.1023/A:1012728819326 CrossRefGoogle Scholar
  169. MacFall JS, Johnson GA, Kramer PJ (1990) Observation of a water-depletion region surrounding loblolly pine roots by magnetic resonance imaging. Proc Natl Acad Sci USA 87:1203–1207 doi: 10.1073/pnas.87.3.1203 PubMedCrossRefGoogle Scholar
  170. Marschner H (1995) Mineral Nutrition of Higher Plants, 2nd edn. Academic Press, London, p 889Google Scholar
  171. Marschner H, Römheld V (1983) In vivo measurement of root-induced pH changes at the soil-root interface: effect of plant species and nitrogen source. Z Pflanzenernaehr Bodenkd 111:241–251Google Scholar
  172. Marschner P, Solaiman Z, Rengel Z (2006) Rhizosphere properties of Poaceae genotypes under P-limiting conditions. Plant Soil 283:11–24 doi: 10.1007/s11104-005-8295-5 CrossRefGoogle Scholar
  173. Martens DA (2000) Relationship between plant phenolic acids released during soil mineralisation and aggregate stabilisation. Soil Sci Soc Am J 66:1857–1867Google Scholar
  174. Martens DA, Frankenberger WT (1992) Decomposition of bacteria polymers in soil and their influence on soil structure. Biol Fertil Soils 13:65–73 doi: 10.1007/BF00337337 CrossRefGoogle Scholar
  175. Masle J, Passioura JB (1987) The effect of soil strength on the growth of young wheat plants. Aust J Plant Physiol 14:643–656Google Scholar
  176. McCully ME (1999) Roots in soil: unearthing the complexities of roots and their rhizospheres. Ann. Rev. Plant Physiol Plant Mol Biol 50:695–718 doi: 10.1146/annurev.arplant.50.1.695 CrossRefGoogle Scholar
  177. McCully ME, Boyer JS (1997) The expansion of maize root-cap mucilage during hydration. 3. Changes in water potential and water content. Physiol Plant 99:169–177 doi: 10.1111/j.1399-3054.1997.tb03445.x CrossRefGoogle Scholar
  178. Menon M, Robinson B, Oswald SE, Kaestner A, Abbaspour KC, Lehmann E, Schulin R (2006) Visualization of root growth in heterogeneously contaminated soil using neutron radiography. Eur J Soil Sci 58:802–810 doi: 10.1111/j.1365-2389.2006.00870.x CrossRefGoogle Scholar
  179. Michaud AM, Bravin MN, Galleguillos M, Hinsinger P (2007) Copper uptake and phytotoxicity as assessed in situ for durum wheat (Triticum turgidum durum L.) cultivated in Cu-contaminated, former vineyard soils. Plant Soil 298:99–111 doi: 10.1007/s11104-007-9343-0 CrossRefGoogle Scholar
  180. Moreno-Espindola IP, Rivera-Becerril F, de Jesus Ferrara-Guerrero M, De Leon-Gonzalez F (2007) Role of root-hairs and hyphae in adhesion of sand particles. Soil Biol Biochem 39:2520–2526 doi: 10.1016/j.soilbio.2007.04.021 CrossRefGoogle Scholar
  181. Mullins CE, Panayiotopoulos KP (1984) The strength of unsaturated mixtures of sand and kaolin and the concept of effective stress. Eur J Soil Sci 35:459–468 doi: 10.1111/j.1365-2389.1984.tb00303.x CrossRefGoogle Scholar
  182. Neubauer SC, Toledo-Durán GE, Emerson D, Megonigal JP (2007) Returning to their roots: iron-oxidizing bacteria enhance short-term plaque formation in the wetland-plant rhizosphere. Geomicrobiol J 24:65–73 doi: 10.1080/01490450601134309 CrossRefGoogle Scholar
  183. Newman BD, Wilcox BP, Archer SR, Breshears DD, Dahm CN, Duffy CJ, McDowell NG, Phillips FM, Scanlon BR, Vivoni ER (2006) Ecohydrology of water-limited environments: a scientific vision. Water Resour Res 42:1–15 doi: 10.1029/2005WR004141 CrossRefGoogle Scholar
  184. Nguyen C (2003) Rhizodeposition of organic C by plants: mechanisms and controls. Agronomie 23:375–396 doi: 10.1051/agro:2003011 CrossRefGoogle Scholar
  185. Nichol SA, Silk WK (2001) Empirical evidence of a convection–diffusion model for pH patterns in the rhizospheres of root tips. Plant Cell Environ 24:967–974 doi: 10.1046/j.0016-8025.2001.00739.x CrossRefGoogle Scholar
  186. Nobel PS, Cui M (1992) Hydraulic conductances of the soil, the root-soil air gap, and the root: Changes for desert succulents in drying soil. J Exp Bot 43:319–326 doi: 10.1093/jxb/43.3.319 CrossRefGoogle Scholar
  187. North GB, Nobel PS (1997) Drought-induced changes in soil contact and hydraulic conductivity for roots of Opuntia ficus-indica with and without rhizosheaths. Plant Soil 191:249–258 doi: 10.1023/A:1004213728734 CrossRefGoogle Scholar
  188. Nowack B, Mayer KU, Oswald SE, van Beinum W, Appelo CAJ, Jacques D, Seuntjens P, Gérard F, Jaillard B, Schnepf A, Roose T (2006) Verification and intercomparison of reactive transport codes to describe root-uptake. Plant Soil 285:305–321 doi: 10.1007/s11104-006-9017-3 CrossRefGoogle Scholar
  189. Nunan N, Wu K, Young IM, Crawford JW, Ritz K (2003) Spatial distribution of bacterial communities and their relationships with the micro-architecture of soil. FEMS Microbiol Ecol 44:203–215 doi: 10.1016/S0168-6496(03)00027-8 CrossRefPubMedGoogle Scholar
  190. Nye PH (1981) Changes of pH across the rhizosphere induced by roots. Plant Soil 61:7–26 doi: 10.1007/BF02277359 CrossRefGoogle Scholar
  191. Nye PH (1983) The diffusion of two interacting solutes in soil. J Soil Sci 34:677–691Google Scholar
  192. Nye PH, Marriott FHC (1969) A theoretical study of the distribution of substances around roots resulting from simultaneous diffusion and mass flow. Plant Soil 30:459–472 doi: 10.1007/BF01881971 CrossRefGoogle Scholar
  193. Odell RE, Dumlao MR, Samar D, Silk WK (2008) Stage-dependent border cell and carbon flow from roots to rhizosphere. Am J Bot 95:441–446 doi: 10.3732/ajb.95.4.441 CrossRefGoogle Scholar
  194. Pankhurst CE, Pierret A, Hawke BG, Kirby JM (2002) Microbiological and chemical properties of soil associated with macropores at different depths in a red-duplex soil in NSW Australia. Plant Soil 238:11–20 doi: 10.1023/A:1014289632453 CrossRefGoogle Scholar
  195. Pardales JR, Kono Y (1990) Development of sorghum root system under increasing drought stress. Jpn J Crop Sci 59:752–761Google Scholar
  196. Passioura JB (1988) Root signals control leaf expansion in wheat seedlings growing in drying soil. Aust J Plant Physiol 15:687–693Google Scholar
  197. Passioura JB (1991) Soil structure and plant-growth. Aust J Soil Res 29:717–728 doi: 10.1071/SR9910717 CrossRefGoogle Scholar
  198. Passioura JB (2002) Soil conditions and plant growth. Plant Cell Environ 25:311–318 doi: 10.1046/j.0016-8025.2001.00802.x PubMedCrossRefGoogle Scholar
  199. Passioura JB, Munns R (1984) Hydraulic resistance of plants. II. Effects of rooting medium, and time of day, in barley and lupin. Aust J Plant Physiol 11:341–350CrossRefGoogle Scholar
  200. Paynel F, Cliquet JB (2003) N transfer from white clover to perennial ryegrass, via exudation of nitrogenous compounds. Agronomie 23:503–510 doi: 10.1051/agro:2003022 CrossRefGoogle Scholar
  201. Perata P, Alpi A (1993) Plant-responses to anaerobiosis. Plant Sci 93:1–17 doi: 10.1016/0168-9452(93)90029-Y CrossRefGoogle Scholar
  202. Peters WS (2004) Growth rate gradients and extracellular pH in roots: how to control an explosion. New Phytol 162:571–574 doi: 10.1111/j.1469-8137.2004.01085.x CrossRefGoogle Scholar
  203. Philippot L, Hallin S, Börjesson G, Baggs EM (2009) Biogeochemical cycling in the rhizosphere having an impact on global change. Plant Soil (this volume, in preparation)Google Scholar
  204. Pidello A (2003) The effect of Pseudomonas fluorescens strains varying in pyoverdine production on the soil redox status. Plant Soil 253:373–379 doi: 10.1023/A:1024875824350 CrossRefGoogle Scholar
  205. Pidello A, Jocteur Monrozier L (2006) Inoculation of the redox effector Pseudomonas fluorescens C7R12 strain affects soil redox status at the aggregate scale. Soil Biol Biochem 38:1396–1402 doi: 10.1016/j.soilbio.2005.10.010 CrossRefGoogle Scholar
  206. Pidello A, Menendez L, Lensi R (1993) Azospirillum affects Eh and potential denitrification in a soil. Plant Soil 157:31–34Google Scholar
  207. Pineros MA, Shaff JE, Manslank HS, Alves VMC, Kochian LV (2005) Aluminum resistance in maize cannot be solely explained by root organic acid exudation. A comparative physiological study. Plant Physiol 137:231–241 doi: 10.1104/pp.104.047357 Google Scholar
  208. Pierret A, Moran CJ, Pankhurst CE (1999) Differentiation of soil properties related to the spatial association of wheat roots and soil macropores. Plant Soil 211:51–58 doi: 10.1023/A:1004490800536 CrossRefGoogle Scholar
  209. Pierret A, Doussan C, Garrigues E, Mc Kirby J (2003) Observing plant roots in their environment: current imaging options and specific contribution of two-dimensional approaches. Agronomie 23:471–479 doi: 10.1051/agro:2003019 CrossRefGoogle Scholar
  210. Pierret A, Moran C, Doussan C (2005) Conventional detection methodology is limiting our ability to understand the roles and functions of fine roots. New Phytol 166:967–980 doi: 10.1111/j.1469-8137.2005.01389.x PubMedCrossRefGoogle Scholar
  211. Pierret A, Doussan C, Capowiez Y, Bastardie F, Pagès L (2007) Root functional architecture: a framework for modeling the interplay between roots and soil. Vadose Zone J 6:269–281 doi: 10.2136/vzj2006.0067 CrossRefGoogle Scholar
  212. Plassard C, Meslem M, Souche G, Jaillard B (1999) Localization and quantification of net fluxes of H+ along roots of maize by combined use of videodensitometry of indicator dye and ion-selective microelectrodes. Plant Soil 211:29–39 doi: 10.1023/A:1004560208777 CrossRefGoogle Scholar
  213. Plassard C, Guerin-Laguette A, Véry AA, Casarin V, Thibauld JB (2002) Local measurements of nitrate and potassium fluxes along roots of maritime pine. Effetcs of ectomycorrhizal symbiosis. Plant Cell Environ 25:75–84 doi: 10.1046/j.0016-8025.2001.00810.x CrossRefGoogle Scholar
  214. Raab TK, Lipson DA, Monson RK (1996) Non-mycorrhizal uptake of amino acids by roots of the alpine sedge Kobresia myosuroides: implications for the alpine nitrogen cycle. Oecologia 108:488–494 doi: 10.1007/BF00333725 CrossRefGoogle Scholar
  215. Ranjard L, Richaume AS (2001) Quantitative and qualitative microscale distribution of bacteria in soil. Res Microbiol 152:707–716 doi: 10.1016/S0923-2508(01)01251-7 PubMedCrossRefGoogle Scholar
  216. Rao TR, Yano K, Iijima M, Yamauchi A, Tatsumi J (2002) Regulation of rhizosphere acidification by photosynthetic activity in cowpea (Vigna unguiculata L.Walp.) seedlings. Ann Bot (Lond) 89:213–220 doi: 10.1093/aob/mcf030 CrossRefGoogle Scholar
  217. Ramette A, Tiedje JM (2007) Multiscale responses of microbial life to spatial distance and environmental heterogeneity in a patchy ecosystem. Proc Natl Acad Sci USA 104:2761–2766 doi: 10.1073/pnas.0610671104 PubMedCrossRefGoogle Scholar
  218. Rappoldt C, Crawford JW (1999) The distribution of anoxic volume in a fractal model of soil. Geoderma 88:329–347 doi: 10.1016/S0016-7061(98)00112-8 CrossRefGoogle Scholar
  219. Raven JA (1986) Biochemical disposal of excess H+ in growing plants? New Phytol 104:175–206 doi: 10.1111/j.1469-8137.1986.tb00644.x CrossRefGoogle Scholar
  220. Raven JA, Edwards D (2001) Roots: evolutionary origin and biogeochemical significance. J Exp Bot 52:381–408PubMedGoogle Scholar
  221. Raynaud X, Lata JC, Leadley PW (2006) Soil microbial loop and nutrient uptake by plants: a test using a coupled C : N model of plant-microbial interactions. Plant Soil 287:95–116 doi: 10.1007/s11104-006-9003-9 CrossRefGoogle Scholar
  222. Raynaud X, Jaillard B, Leadley PW (2008) Plants may alter competition by modifying nutrient bioavailability in rhizosphere: a modeling approach. Am Nat 171:44–58 doi: 10.1086/523951 PubMedCrossRefGoogle Scholar
  223. Read DJ, Perez-Moreno J (2003) Mycorrhizas and nutrient cycling in ecosystems – a journey towards relevance? New Phytol 157:475–492 doi: 10.1046/j.1469-8137.2003.00704.x CrossRefGoogle Scholar
  224. Read DB, Gregory PJ, Bell AE (1999) Physical properties of axenic maize root mucilage. Plant Soil 211:87–91 doi: 10.1023/A:1004403812307 CrossRefGoogle Scholar
  225. Read DB, Bengough AG, Gregory PJ, Crawford JW, Robinson D, Scrimgeour CM, Young IM, Zhang K, Zhang X (2003) Plant roots release phospholipid surfactants that modify the physical and chemical properties of soil. New Phytol 157:315–326 doi: 10.1046/j.1469-8137.2003.00665.x CrossRefGoogle Scholar
  226. Reichard PU, Kraemer SM, Frazier SW, Kretzschmar R (2005) Goethite dissolution in the presence of phytosiderophores: rates, mechanisms, and the synergistic effect of oxalate. Plant Soil 276:115–132 doi: 10.1007/s11104-005-3504-9 CrossRefGoogle Scholar
  227. Reichard PU, Kretzschmar R, Kraemer SM (2007) Dissolution mechanisms of goethite in the presence of siderophores and organic acids. Geochim Cosmochim Acta 71:5635–5650 doi: 10.1016/j.gca.2006.12.022 CrossRefGoogle Scholar
  228. Reichman SM, Parker DR (2007) Probing the effects of light and temperature on diurnal rhythms of phytosiderophore release in wheat. New Phytol 174:101–108 doi: 10.1111/j.1469-8137.2007.01990.x PubMedCrossRefGoogle Scholar
  229. Reidenbach G, Horst W (1997) Nitrate-uptake capacity of different root zones of Zea mays (L.) in vitro and in situ. Plant Soil 196:295–300 doi: 10.1023/A:1004280225323 CrossRefGoogle Scholar
  230. Renault P, Stengel P (1994) Modeling oxygen diffusion in aggregated soils. I. Anaerobiosis inside the aggregates. Soil Sci Soc Am J 58:1017–1023Google Scholar
  231. Revsbech NP, Pedersen O, Reichardt W, Briones A (1999) Microsensor analysis of oxygen and pH in the rice rhizosphere under field and laboratory conditions. Biol Fertil Soils 29:379–385 doi: 10.1007/s003740050568 CrossRefGoogle Scholar
  232. Richardson AE, Barea JM, McNeil AM, Prigent-Combaret C (2009) Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant Soil (this volume, in preparation)Google Scholar
  233. Rigou L, Mignard E, Plassard C, Arvieu JC, Rémy JC (1995) Influence of ectomycorrhizal infection on the rhizosphere pH around roots of maritime pine (Pinus pinaster Soland in Ait.). New Phytol 130:141–147 doi: 10.1111/j.1469-8137.1995.tb01824.x CrossRefGoogle Scholar
  234. Riley D, Barber SA (1971) Effect of ammonium and nitrate fertilization on phosphorus uptake as related to root-induced pH changes at the root-soil interface. Soil Sci Soc Am Proc 35:301–306Google Scholar
  235. Robin A, Vansuyt G, Hinsinger P, Meyer JM, Briat JF, Lemanceau P (2008) Iron dynamics in the rhizosphere: consequences for plant health and nutrition. Adv Agron 99:183–225 doi: 10.1016/S0065-2113(08)00404-5 CrossRefGoogle Scholar
  236. Robinson D, Hodge A, Griffiths BS, Fitter AH (1999) Plant root proliferation in nitrogen-rich patches confers competitive advantage. Proc R Soc Lond B Biol Sci 265:431–435Google Scholar
  237. Römheld V, Marschner H (1981) Iron deficiency stress induced morphological and physiological changes in root tips on sunflower. Physiol Plant 53:354–360 doi: 10.1111/j.1399-3054.1981.tb04512.x CrossRefGoogle Scholar
  238. Rosling A, Lindahl BD, Finlay RD (2004) Carbon allocation to ectomycorrhizal roots and mycelium colonising different mineral substrates. New Phytol 162:795–802 doi: 10.1111/j.1469-8137.2004.01080.x CrossRefGoogle Scholar
  239. Ryan PR, Delhaize E, Jones DL (2001) Function and mechanism of organic anion exudation from plant roots. Annu Rev Plant Physiol Plant Mol Biol 52:527–560 doi: 10.1146/annurev.arplant.52.1.527 PubMedCrossRefGoogle Scholar
  240. Ryel RJ, Caldwell MM, Yoder CK, Or D, Leffler AJ (2002) Hydraulic redistribution in a stand of Artemisia tridentata: evaluation of benefits to transpiration assessed with a simulation model. Oecologia 130:173–184Google Scholar
  241. Saleque MA, Kirk GJD (1995) Root-induced solubilization of phosphate in the rhizosphere of lowland rice. New Phytol 129:325–336 doi: 10.1111/j.1469-8137.1995.tb04303.x CrossRefGoogle Scholar
  242. Sanderson J (1983) Water uptake by different regions of the barley root. Pathways of radial flow in relation to development of the endodermis. J Exp Bot 34:240–253 doi: 10.1093/jxb/34.3.240 CrossRefGoogle Scholar
  243. Schaller G (1987) pH changes in the rhizosphere in relation to the pH-buffering of soils. Plant Soil 97:444–449 doi: 10.1007/BF02383234 CrossRefGoogle Scholar
  244. Schöttelndreier M, Falkengren-Grerup U (1999) Plant induced alteration in the rhizosphere and the utilisation of soil heterogeneity. Plant Soil 209:297–309 doi: 10.1023/A:1004681229442 CrossRefGoogle Scholar
  245. Schreiber L, Franke R, Hartmann K-D, Ranathunge K, Steudle E (2005) The chemical composition of suberin in apoplastic barriers affects radial hydraulic conductivity differently in the roots of rice (Oryza sativa L. cv. IR64) and corn (Zea mays L. cv. Helix). J Exp Bot 56:1427–1436 doi: 10.1093/jxb/eri144 PubMedCrossRefGoogle Scholar
  246. Schubert S, Schubert E, Mengel K (1990) Effect of low pH of the root medium on proton release, growth, and nutrient uptake of field beans (Vicia faba). Plant Soil 124:239–244 doi: 10.1007/BF00009266 CrossRefGoogle Scholar
  247. Shane MW, Lambers H (2005) Cluster roots: a curiosity in context. Plant Soil 274:101–125 doi: 10.1007/s11104-004-2725-7 CrossRefGoogle Scholar
  248. Shane MW, McCully ME, Canny MJ (2000) Architecture of branch-root junctions in maize: structure of connecting xylem and the porosity of pit membranes. Ann Bot (Lond) 85:613–624 doi: 10.1006/anbo.2000.1113 CrossRefGoogle Scholar
  249. Sharp RE, Davies WJ (1985) Root growth and water uptake by maize plants in drying soil. J Exp Bot 36:1441–1456 doi: 10.1093/jxb/36.9.1441 CrossRefGoogle Scholar
  250. Sharp RE, Poroyko V, Hejlek LG, Spollen WG, Springer GK, Bohnert HJ, Nguyen HT (2004) Root growth maintenance during water deficits: physiology to functional genomics. J Exp Bot 55:2343–2351 doi: 10.1093/jxb/erh276 PubMedCrossRefGoogle Scholar
  251. Spehn EM, Joshi J, Schmid B, Alphei J, Körner C (2000) Plant diversity effects on soil heterotrophic activity in experimental grassland ecosystems. Plant Soil 224:217–230 doi: 10.1023/A:1004891807664 CrossRefGoogle Scholar
  252. Sperry JS, Hacke UG, Oren R, Comstock JP (2002) Water deficits and hydraulic limits to leaf water supply. Plant Cell Environ 25:251–263 doi: 10.1046/j.0016-8025.2001.00799.x PubMedCrossRefGoogle Scholar
  253. Standing D, Baggs EM, Wattenbach M, Smith P, Killham K (2007) Meeting the challenge of scaling up processes in the plant–soil–microbe system. Biol Fertil Soils 44:245–257 doi: 10.1007/s00374-007-0249-z CrossRefGoogle Scholar
  254. Steudle E (1993) Pressure probe techniques: Basic principles and application to studies of water and solute relations at the cell, tissue, and organ level. In: Smith JAC, Griffiths H (eds) Water Deficits: Plant Responses from Cell to Community. Bios Scientific Publishers, Oxford, UK, pp 5–36Google Scholar
  255. Steudle E (2000) Water uptake by plant roots: an integration of views. Plant Soil 226:45–56 doi: 10.1023/A:1026439226716 CrossRefGoogle Scholar
  256. Steudle E (2001) The cohesion-tension mechanism and the acquisition of water by plant roots. Annu Rev Plant Physiol Plant Mol Biol 52:847–875 doi: 10.1146/annurev.arplant.52.1.847 PubMedCrossRefGoogle Scholar
  257. Steudle E, Peterson CA (1998) How does water get through roots? J Exp Bot 49:775–788 doi: 10.1093/jexbot/49.322.775 CrossRefGoogle Scholar
  258. Stewart JB, Moran CJ, Wood JT (1999) Macropore sheat: quantification of plant root and soil macropore association. Plant Soil 211:59–67 doi: 10.1023/A:1004405422847 CrossRefGoogle Scholar
  259. Stirzaker RJ, Passioura JB (1996) The water relations of the root-soil interface. Plant Cell Environ 19:201–208 doi: 10.1111/j.1365-3040.1996.tb00241.x CrossRefGoogle Scholar
  260. Stirzaker RJ, Passioura JB, Wilms Y (1996) Soil structure and plant growth: impact of bulk density and biopores. Plant Soil 185:151–162 doi: 10.1007/BF02257571 CrossRefGoogle Scholar
  261. Strong DT, Sale PWG, Helyar KR (1997) Initial soil pH affects the pH at which nitrification ceases due to self-induced acidification of microbial microsites. Aust J Soil Res 35:565–570 doi: 10.1071/S96055 CrossRefGoogle Scholar
  262. Szegedi K, Vetterlein D, Nietfeld H, Neue H-U, Jahn R (2008) New tool RhizoMath for modeling coupled transport and speciation in the rhizosphere. Vadose Zone J 7:712–720 doi: 10.2136/vzj2007.0064 CrossRefGoogle Scholar
  263. Tang C, Kuo J, Longnecker NE, Thomson CJ, Robson AD (1993) High pH causes disintegration of the root surface in Lupinus angustifolius L. Ann Bot (Lond) 71:201–207 doi: 10.1006/anbo.1993.1025 CrossRefGoogle Scholar
  264. Tang C, Drevon JJ, Jaillard B, Souche G, Hinsinger P (2004) Proton release of two genotypes of bean (Phaseolus vulgaris L.) as affected by N nutrition and P deficiency. Plant Soil 260:59–68 doi: 10.1023/B:PLSO.0000030174.09138.76 CrossRefGoogle Scholar
  265. Tarafdar JC, Jungk A (1987) Phosphatase activity in the rhizosphere and its relation to the depletion of soil organic phosphorus. Biol Fertil Soils 3:199–204 doi: 10.1007/BF00640630 CrossRefGoogle Scholar
  266. Taylor HM, Ratliff LH (1969) Root elongation rates of cotton and peanuts as a function of soil strength and water content. Soil Sci 108:113–119 doi: 10.1097/00010694-196908000-00006 CrossRefGoogle Scholar
  267. Thompson MV, Holbrook NM (2004) Root-gel interactions and the root waving behavior of Arabidopsis. Plant Physiol 135:1822–1837 doi: 10.1104/pp.104.040881 PubMedCrossRefGoogle Scholar
  268. Tisdall JM, Oades JM (1992) Organic matter and water stable aggregates in soils. J Soil Sci 33:141–163 doi: 10.1111/j.1365-2389.1982.tb01755.x CrossRefGoogle Scholar
  269. Trolldenier G (1988) Visualization of oxidizing power of rice roots and of possible participation of bacteria in iron deposition. Z Pflanzenernaehr Bodenkd 151:117–121 doi: 10.1002/jpln.19881510209 CrossRefGoogle Scholar
  270. Turpault MP, Utérano C, Boudot JP, Ranger J (2005) Influence of mature Douglas fir roots on the solid soil phase of the rhizosphere and its solution chemistry. Plant Soil 275:327–336 doi: 10.1007/s11104-005-2584-x CrossRefGoogle Scholar
  271. Turpault MP, Gobran GR, Bonnaud P (2007) Temporal variations of rhizosphere and bulk soil chemistry in a Douglas fir stand. Geoderma 137:490–496 doi: 10.1016/j.geoderma.2006.10.005 CrossRefGoogle Scholar
  272. Tyerman SD, Niemietz CM, Bramley H (2002) Plant aquaporins: multifunctional water and solute channels with expanding roles. Plant Cell Environ 25:173–194 doi: 10.1046/j.0016-8025.2001.00791.x PubMedCrossRefGoogle Scholar
  273. Tyree MT, Sperry JS (1989) Vulnerability of xylem to cavitation and embolism. Annu Rev Plant Physiol Plant Mol Biol 40:19–38 doi: 10.1146/annurev.pp.40.060189.000315 CrossRefGoogle Scholar
  274. Urbanek E, Hallett P, Feeney D, Horn R (2007) Water repellency and distribution of hydrophilic and hydrophobic compounds in aggregates from different tillage systems. Geoderma 140:147–155 doi: 10.1016/j.geoderma.2007.04.001 CrossRefGoogle Scholar
  275. Vandeleur R, Niemietz C, Tilbrook J, Tyerman SD (2005) Roles of aquaporins in root responses to irrigation. Plant Soil 274:141–161 doi: 10.1007/s11104-004-8070-z CrossRefGoogle Scholar
  276. Vansuyt G, Souche G, Straczek A, Briat JF, Jaillard B (2003) Flux of protons released by wild type and ferritin over-expressor tobacco plants: effect of phosphorus and iron nutrition. Plant Physiol Biochem 41:27–33 doi: 10.1016/S0981-9428(02)00005-0 CrossRefGoogle Scholar
  277. Veen BW, Van Noordwijk M, De Willigen P, Boone FR, Kooistra MJ (1992) Root-soil contact of maize, as measured by a thin-section technique. III. Effects on shoot growth, nitrate and water uptake efficiency. Plant Soil 139:131–138 doi: 10.1007/BF00012850 CrossRefGoogle Scholar
  278. Verboom WH, Pate JS (2006) Bioengineering of soil profiles in semiarid ecosystems: the ‘phytotarium’ concept. A review. Plant Soil 289:71–102 doi: 10.1007/s11104-006-9073-8 CrossRefGoogle Scholar
  279. Vetterlein D, Jahn R (2004a) Combination of micro suction cups and time-domain reflectometry to measure osmotic potential gradients between bulk soil and rhizosphere at high resolution in time and space. Eur J Soil Sci 55:497–504 doi: 10.1111/j.1365-2389.2004.00612.x CrossRefGoogle Scholar
  280. Vetterlein D, Jahn R (2004b) Gradients in soil solution composition between bulk soil and rhizosphere–In situ measurement with changing soil water content. Plant Soil 258:307–317 doi: 10.1023/B:PLSO.0000016560.84772.d1 CrossRefGoogle Scholar
  281. Vetterlein D, Marschner H (1993) Use of microtensiometer technique for studies of hydraulic lift in a sandy soil planted with pearl millet (Pennisetum americanum [L.] Leeke). Plant Soil 149:275–282 doi: 10.1007/BF00016618 CrossRefGoogle Scholar
  282. Vetterlein D, Kuhn K, Schubert S, Jahn R (2004) Consequences of sodium exclusion for the osmotic potential in the rhizosphere - Comparison of two maize cultivars differing in Na+ uptake. J Plant Nutr Soil Sci 167:337–344 doi: 10.1002/jpln.200420407 CrossRefGoogle Scholar
  283. Vetterlein D, Szegedi K, Stange F, Jahn R (2007a) Impact of soil texture on temporal and spatial development of osmotic-potential gradients between bulk soil and rhizosphere. J Plant Nutr Soil Sci 170:347–356 doi: 10.1002/jpln.200521952 CrossRefGoogle Scholar
  284. Vetterlein D, Szegedi K, Ackermann J, Mattusch J, Neue H-U, Tanneberg H, Jahn R (2007b) Competitive mobilisation of phosphate and arsenate associated with goethite by root activity. J Environ Qual 36:1811–1820 doi: 10.2134/jeq2006.0369 PubMedCrossRefGoogle Scholar
  285. Wallace HR (1958) Movement of eelworms. Ann Appl Biol 46:74–85 doi: 10.1111/j.1744-7348.1958.tb02179.x CrossRefGoogle Scholar
  286. Wallander H (2000) Uptake of P from apatite by Pinus sylvestris seedlings colonised by different ectomycorrhizal fungi. Plant Soil 218:249–256 doi: 10.1023/A:1014936217105 CrossRefGoogle Scholar
  287. Walter A, Pich A, Scholz G, Marschner H, Römheld V (1995) Diurnal variations in release of phytosiderophores and in concentrations of phytosiderophores and nicotianamine in roots and shoots of barley. J Plant Physiol 147:191–196Google Scholar
  288. Wardle DA (1992) A comparative asssessment of factors which influence microbial growth carbon and nitrogen levels in soil. Biol Rev Camb Philos Soc 67:321–358 doi: 10.1111/j.1469-185X.1992.tb00728.x CrossRefGoogle Scholar
  289. Wardle DA, Bardgett RD, Klironomos JN, Setala H, van der Putten WH, Wall DH (2004) Ecological linkages between aboveground and belowground biota. Science 304:1629–1633 doi: 10.1126/science.1094875 PubMedCrossRefGoogle Scholar
  290. Watt M, McCully ME, Jeffree CE (1993) Plant and bacterial mucilages of the maize rhizosphere - comparison of their soil-binding properties and histochemistry in a model system. Plant Soil 151:151–165 doi: 10.1007/BF00016280 CrossRefGoogle Scholar
  291. Watt M, McCully ME, Canny MJ (1994) Formation and stabilisation of maize rhizosheaths: Effect of soil water content. Plant Physiol 106:179–186PubMedGoogle Scholar
  292. Watt M, McCully ME, Kirkegaard JA (2003) Soil strength and rate of root elongation alter the accumulation of Pseudomonas spp. and other bacteria in the rhizosphere of wheat. Funct Plant Biol 30:483–491 doi: 10.1071/FP03045 Google Scholar
  293. Watt M, Kirkegaard JA, Rebetzke GJ (2005) A wheat genotype developed for rapid leaf growth copes well with the physical and biological constraints of unploughed soil. Funct Plant Biol 32:695–706 doi: 10.1071/FP05026 CrossRefGoogle Scholar
  294. Watt M, Silk WK, Passioura JB (2006a) Rates of root and organism growth, soil conditions, and temporal and spatial development of the rhizosphere. Ann Bot (Lond) 97:839–855 doi: 10.1093/aob/mcl028 CrossRefGoogle Scholar
  295. Watt M, Hugenholtz P, White R, Vinall K (2006b) Numbers and locations of native bacteria on field-grown wheat roots quantified by fluorescence in situ hybridization (FISH). Environ Microbiol 8:871–884 doi: 10.1111/j.1462-2920.2005.00973.x PubMedCrossRefGoogle Scholar
  296. Watt M, Kirkegaard JA, Passioura JB (2006c) Rhizosphere biology and crop productivity-a review. Aust J Soil Res 44:299–317 doi: 10.1071/SR05142 CrossRefGoogle Scholar
  297. Weisenseel MH, Dorn A, Jaffe FJ (1979) Natural H+ currents traverse growing roots and root hairs of barley (Hordeum vulgare L.). Plant Physiol 64:512–518PubMedCrossRefGoogle Scholar
  298. Whalley WR, Leeds-Harrison PB, Clark LJ, Gowing DJG (2005a) Use of effective stress to predict the penetrometer resistance of unsaturated agricultural soils. Soil Tillage Res 84:18–27 doi: 10.1016/j.still.2004.08.003 CrossRefGoogle Scholar
  299. Whalley WR, Riseley B, Leeds-Harrison PB, Bird NRA, Leech PK, Adderley WP (2005b) Structural differences between bulk and rhizosphere soil. Eur J Soil Sci 56:353–360 doi: 10.1111/j.1365-2389.2004.00670.x CrossRefGoogle Scholar
  300. Williams SM, Weil RR (2004) Crop cover root channels may alleviate soil compaction effects on soybean crop. Soil Sci Soc Am J 68:1403–1409Google Scholar
  301. Yanai J, Sawamoto T, Oe T, Kusa K, Yamakawa K, Sakamoto K, Naganawa T, Inubushi K, Hatano R, Kosaki T (2003) Spatial variability of nitrous oxide emissions and their soil-related determining factors in an agricultural field. J Environ Qual 32:1965–1977PubMedCrossRefGoogle Scholar
  302. Yang J, Hammer RD, Blanchar RW (1995) Microscale pH spatial-distribution in the Ap horizon of Mexico silt loam. Soil Sci 160:371–375 doi: 10.1097/00010694-199511000-00006 CrossRefGoogle Scholar
  303. Yang J, Blanchar RW, Hammer RD, Thompson AL (1996) Soybean growth and rhizosphere pH as influenced by horizon thickness. Soil Sci Soc Am J 60:1901–1907Google Scholar
  304. Yoder CK, Nowak RS (1999) Hydraulic lift among native plant species in the Mojave Desert. Plant Soil 215:93–102 doi: 10.1023/A:1004729232466 CrossRefGoogle Scholar
  305. Young IM (1995) Variations in moisture contents between bulk soil and the rhizosheath of wheat (Triticum aestivum L. cv Wembley). New Phytol 130:135–139 doi: 10.1111/j.1469-8137.1995.tb01823.x CrossRefGoogle Scholar
  306. Young IM (1998) Biophysical interactions at the root-soil interface: a review. J Agric Sci 130:1–7 doi: 10.1017/S002185969700498X CrossRefGoogle Scholar
  307. Young IM, Ritz K (2000) Tillage, habitat space and function of soil microbes. Soil Tillage Res 53:201–213 doi: 10.1016/S0167-1987(99)00106-3 CrossRefGoogle Scholar
  308. Young IM, Crawford JW (2004) Interactions and self-organisation in the soil-microbe complex. Science 304:1634–1637 doi: 10.1126/science.1097394 PubMedCrossRefGoogle Scholar
  309. Young IM, Montagu K, Conroy J, Bengough AG (1997) Mechanical impedance of root growth directly reduces leaf elongation rates of cereals. New Phytol 135:613–619 doi: 10.1046/j.1469-8137.1997.00693.x CrossRefGoogle Scholar
  310. Young IM, Crawford JW, Rappoldt C (2001) New methods and models for characterising structural heterogeneity of soil. Soil Tillage Res 61:33–45 doi: 10.1016/S0167-1987(01)00188-X CrossRefGoogle Scholar
  311. Zimmermann HM, Hartmann K, Schreiber L, Steudle E (2000) Chemical composition of apoplastic transport barriers in relation to radial hydraulic conductivity of corn roots (Zea mays L.). Planta 210:302–311 doi: 10.1007/PL00008138 PubMedCrossRefGoogle Scholar
  312. Zwieniecki MA, Thompson MV, Holbrook NM (2003) Understanding the hydraulics of porous pipes: tradeoffs between water uptake and root length utilization. J Plant Growth Regul 21:315–323 doi: 10.1007/s00344-003-0008-9 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Philippe Hinsinger
    • 1
  • A. Glyn Bengough
    • 2
  • Doris Vetterlein
    • 3
  • Iain M. Young
    • 4
  1. 1.UMR 1222 Eco&Sols Ecologie Fonctionnelle & Biogéochimie des Sols (INRA–IRD–SupAgro), INRAMontpellierFrance
  2. 2.Scottish Crop Research InstituteDundeeUnited Kingdom
  3. 3.Department Soil PhysicsHelmholtz Centre for Environmental Research-UFZHalle/SaaleGermany
  4. 4.School of Environmental and Rural SciencesUniversity of New EnglandArmidaleAustralia

Personalised recommendations