Plant and Soil

, Volume 320, Issue 1–2, pp 153–167 | Cite as

Woody plant encroachment impacts on soil carbon and microbial processes: results from a hierarchical Bayesian analysis of soil incubation data

  • Jessica M. Cable
  • Kiona Ogle
  • Anna P. Tyler
  • Mitchell A. Pavao-Zuckerman
  • Travis E. Huxman
Regular Article


Belowground processes and associated plant–microbial interactions play a critical role in how ecosystems respond to environmental change. However, the mechanisms and factors controlling processes such as soil carbon turnover can be difficult to quantify due to methodological or logistical constraints. Soil incubation experiments have the potential to greatly improve our understanding of belowground carbon dynamics, but relating results from laboratory-based incubations to processes measured in the field is challenging. This study has two goals: (1) development of a hierarchical Bayesian (HB) model for analyzing soil incubation data and complementary field data to gain a more mechanistic understanding of soil carbon turnover; (2) application of the approach to soil incubation data collected from a semi-arid riparian grassland experiencing encroachment by nitrogen-fixing shrubs (mesquite). Soil was collected from several depths beneath large-sized shrubs, medium-sized shrubs, grass, and bare ground—the four primary microsite-types found in this ecosystem. We measured respiration rates from substrate-induced incubations, which were accompanied by measurements of soil microbial biomass, soil carbon, and soil nitrogen. Soils under large shrubs had higher respiration rates and support 2.0, 1.9, and 2.6 times greater soil carbon, microbial biomass, and microbial carbon-use efficiency, respectively, compared to soils in grass microsites. The effect of large shrubs on these components is most pronounced near the soil surface where microbial carbon-use efficiency is high because of enhanced litter quality. Grass microsites were very similar to bare ground in many aspects (carbon content, microbial biomass, etc.). Encroachment of mesquite shrubs into this semi-arid grassland may enhance carbon and nutrient cycling and increase the spatial heterogeneity of soil resource pools and fluxes. The HB approach allowed us to synthesize diverse data sources to identify the potential mechanisms of soil carbon and microbial change associated with shrub encroachment.


Decomposition Respiration Soil nitrogen Sonoran desert Prosopis velutina 



We thank Dr. David Williams and Dr. Russell Scott for the access to field sites and intellectual contributions; Greg Barron-Gafford, Ben Collins, Kevin “the Red” Gilliam, and Amelia Hazard for the field assistance; and Mary Kay Amistadi and Jon Chorover, School of Natural Resources, University of Arizona for the TOC analysis of microbial biomass samples. We acknowledge funding from SAHRA (Sustainability of Semi-Arid Hydrology and Riparian Areas) under the STC program of NSF, and NSF awards to TEH, Jake F. Weltzin, and David G. Williams. The experiments herein comply with the current laws of the USA. The statistical analysis was partly supported by a DOE NICCR grant (K.O., T.H.).


  1. Alvarez R, Alvarez CR (2000) Soil organic matter pools and their associations with carbon mineralization kinetics. Soil Sci Soc Am J 64:184–189Google Scholar
  2. Archer S, Schimel DS, Holland EA (1995) Mechanisms of shrubland expansion—land-use, climate or CO2. Clim Change 29:91–99 doi: 10.1007/BF01091640 CrossRefGoogle Scholar
  3. Austin AT, Yahdjian L, Stark JM et al (2004) Water pulses and biogeochemical cycles in arid and semiarid ecosystems. Oecologia 141:221–235 doi: 10.1007/s00442-004-1519-1 PubMedCrossRefGoogle Scholar
  4. Ball AS (1997) Microbial decomposition at elevated CO2 levels: effect of litter quality. Glob Chang Biol 3:379–386 doi: 10.1046/j.1365-2486.1997.t01-1-00089.x CrossRefGoogle Scholar
  5. Berliner M (1996) Hierarchical Bayesian time series models. In: Hanson K, Silver R (eds) Maximum entropy and Bayesian methods. Kluwer, Norwell, MA, pp 15–22Google Scholar
  6. Brooks SP, Gelman A (1998) General methods for monitoring convergence of iterative simulations. J Comput Graph Stat 7:434–455 doi: 10.2307/1390675 CrossRefGoogle Scholar
  7. Chapin FS, Shaver GR, Giblin AE et al (1995) Responses of arctic tundra to experimental and observed changes in climate. Ecology 76:694–711 doi: 10.2307/1939337 CrossRefGoogle Scholar
  8. Clark JS (2005) Why environmental scientists are becoming Bayesians. Ecol Lett 8:2–14 doi: 10.1111/j.1461-0248.2004.00702.x CrossRefGoogle Scholar
  9. Dalias P, Anderson JM, Bottner P et al (2001) Long-term effects of temperature on carbon mineralisation processes. Soil Biol Biochem 33:1049–1057 doi: 10.1016/S0038-0717(01)00009-8 CrossRefGoogle Scholar
  10. Dellaportas P, Stephens A (1995) Bayesian analysis of errors-in-variables regression models. Biometrics 51:1085–1095 doi: 10.2307/2533007 CrossRefGoogle Scholar
  11. Dutta K, Schuur EAG, Neff JC et al (2006) Potential carbon release from permafrost soils of Northeastern Siberia. Glob Chang Biol 12:2336–2351 doi: 10.1111/j.1365-2486.2006.01259.x CrossRefGoogle Scholar
  12. Fierer N, Schimel JP, Holden PA (2003) Influence of drying-rewetting frequency on soil bacterial community structure. Microb Ecol 45:63–71 doi: 10.1007/s00248-002-1007-2 PubMedCrossRefGoogle Scholar
  13. Fierer N, Colman BP, Schimel JP et al (2006) Predicting the temperature dependence of microbial respiration in soil: a continental-scale analysis. Glob Biogeochem Cycles 20:10CrossRefGoogle Scholar
  14. Fliessbach A, Sarig S, Steinberger Y (1994) Effects of water pulses and climatic conditions on microbial biomass kinetics and microbial activity in a yermosol of the central Negev. Arid Soil Res Rehabil 8:353–362Google Scholar
  15. Gelman A, Carlin JB, Stern HS et al (2004) Bayesian data analysis. CRC, Boca Raton, p 668Google Scholar
  16. Grandy AS, Robertson GP (2007) Land-use intensity effects on soil organic carbon accumulation rates and mechanisms. Ecosystems (N Y, Print) 10:58–73 doi: 10.1007/s10021-006-9010-y CrossRefGoogle Scholar
  17. Hamer U, Marschner B (2005) Priming effects in soils after combined and repeated substrate additions. Geoderma 128:38–51 doi: 10.1016/j.geoderma.2004.12.014 CrossRefGoogle Scholar
  18. Hibbard KA, Archer S, Schimel DS et al (2001) Biogeochemical changes accompanying woody plant encroachment in a subtropical savanna. Ecology 82:1999–2011Google Scholar
  19. Hook PB, Burke IC (2000) Biogeochemistry in a shortgrass landscape: control by topography, soil texture, and microclimate. Ecology 81:2686–2703CrossRefGoogle Scholar
  20. Houghton RA, Davidson EA, Woodwell GM (1998) Missing sinks, feedbacks, and understanding the role of terrestrial ecosystems in the global carbon balance. Glob Biogeochem Cycles 12:25–34 doi: 10.1029/97GB02729 CrossRefGoogle Scholar
  21. Hunt HW, Wall DH (2002) Modelling the effects of loss of soil biodiversity on ecosystem function. Glob Chang Biol 8:33–50 doi: 10.1046/j.1365-2486.2002.00425.x CrossRefGoogle Scholar
  22. Huxman TE, Cable JM, Ignace DD et al (2004) Response of net ecosystem gas exchange to a simulated precipitation pulse in a semi-arid grassland: the role of native versus non-native grasses and soil texture. Oecologia 141:295–305PubMedGoogle Scholar
  23. Jackson RB, Canadell J, Ehleringer JR et al (1996) A global analysis of root distributions for terrestrial biomes. Oecologia 108:389–411 doi: 10.1007/BF00333714 CrossRefGoogle Scholar
  24. Jackson RB, Schenk HJ, Jobbagy EG et al (2000) Belowground consequences of vegetation change and their treatment in models. Ecol Appl 10:470–483 doi: 10.1890/1051-0761(2000)010[0470:BCOVCA]2.0.CO;2 CrossRefGoogle Scholar
  25. Jackson RB, Banner JL, Jobbagy EG et al (2002) Ecosystem carbon loss with woody plant invasion of grasslands. Nature 418:623–626 doi: 10.1038/nature00910 PubMedCrossRefGoogle Scholar
  26. Kirschbaum MUF (1995) The temperature-dependence of soil organic-matter decomposition, and the effect of global warming on soil organic-C storage. Soil Biol Biochem 27:753–760 doi: 10.1016/0038-0717(94)00242-S CrossRefGoogle Scholar
  27. Lin Q, Brookes PC (1999) Comparison of substrate induced respiration, selective inhibition and biovolume measurements of microbial biomass and its community structure in unamended, ryegrass-amended, fumigated and pesticide-treated soils. Soil Biol Biochem 31:1999–2014 doi: 10.1016/S0038-0717(99)00122-4 CrossRefGoogle Scholar
  28. Lunn DJ, Thomas A, Best N et al (2000) WinBUGS-A Bayesian modelling framework: concepts, structure, and extensibility. Stat Comput 10:325–337 doi: 10.1023/A:1008929526011 CrossRefGoogle Scholar
  29. NCDC (2008) Available at National Oceanic and Atmospheric Association, Asheville, NC
  30. Ogle K (2008) Hierarchical Bayesian statistics: merging experimental and modeling approaches in ecology. Ecol Appl (in press)Google Scholar
  31. Ogle K, Barber JJ (2008) Bayesian data-model integration in plant physiological and ecosystem ecology. Prog Bot 69:281–311 doi: 10.1007/978-3-540-72954-9_12 CrossRefGoogle Scholar
  32. Paul EA, Harris D, Collins HP et al (1999) Evolution of CO2 and soil carbon dynamics in biologically managed, row-crop agroecosystems. Appl Soil Ecol 11:53–65 doi: 10.1016/S0929-1393(98)00130-9 CrossRefGoogle Scholar
  33. Polley HW, Johnson HB, Tischler CR (2003) Woody invasion of grasslands: evidence that CO2 enrichment indirectly promotes establishment of Prosopis glandulosa. Plant Ecol 164:85–94 doi: 10.1023/A:1021271226866 CrossRefGoogle Scholar
  34. Potts DL, Huxman TE, Scott RL et al (2006) The sensitivity of ecosystem carbon exchange to seasonal precipitation and woody plant encroachment. Oecologia 150:453–463 doi: 10.1007/s00442-006-0532-y PubMedCrossRefGoogle Scholar
  35. Raich JW, Potter CS (1995) Global patterns of carbon-dioxide emissions from soils. Glob Biogeochem Cycles 9:23–36 doi: 10.1029/94GB02723 CrossRefGoogle Scholar
  36. Raich JW, Schlesinger WH (1992) The global carbon-dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus Ser B Chem Phys Meteorol 44:81–99 doi: 10.1034/j.1600-0889.1992.t01-1-00001.x CrossRefGoogle Scholar
  37. Ritz K, Dighton J, Giller KE et al (1994) Beyond the biomass. Wiley, Chichester, p 275Google Scholar
  38. Robertson GP, Klingensmith KM, Klug MJ et al (1997) Soil resources, microbial activity, and primary production across an agricultural ecosystem. Ecol Appl 7:158–170 doi: 10.1890/1051-0761(1997)007[0158:SRMAAP]2.0.CO;2 CrossRefGoogle Scholar
  39. Saetre P, Stark JM (2005) Microbial dynamics and carbon and nitrogen cycling following re-wetting of soils beneath two semi-arid plant species. Oecologia 142:247–260 doi: 10.1007/s00442-004-1718-9 PubMedCrossRefGoogle Scholar
  40. Saleska SR, Harte J, Torn MS (1999) The effect of experimental ecosystem warming on CO2 fluxes in a montane meadow. Glob Chang Biol 5:125–141 doi: 10.1046/j.1365-2486.1999.00216.x CrossRefGoogle Scholar
  41. Schimel DS, Braswell BH, Holland EA et al (1994) Climatic, edaphic, and biotic controls over storage and turnover of carbon in soils. Glob Biogeochem Cycles 8:279–293 doi: 10.1029/94GB00993 CrossRefGoogle Scholar
  42. Schipper LA, Degens BP, Sparling GP et al (2001) Changes in microbial heterotrophic diversity along five plant successional sequences. Soil Biol Biochem 33:2093–2103 doi: 10.1016/S0038-0717(01)00142-0 CrossRefGoogle Scholar
  43. Schuur EAG, Trumbore SE (2006) Partitioning sources of soil respiration in boreal black spruce forest using radiocarbon. Glob Chang Biol 12:165–176 doi: 10.1111/j.1365-2486.2005.01066.x CrossRefGoogle Scholar
  44. Scott RL, Shuttleworth WJ, Goodrich DC et al (2000) The water use of two dominant vegetation communities in a semiarid riparian ecosystem. Agric For Meteorol 105:241–256 doi: 10.1016/S0168-1923(00)00181-7 CrossRefGoogle Scholar
  45. Sherrod LA, Dunn G, Peterson GA et al (2002) Inorganic carbon analysis by modified pressure-calcimeter method. Soil Sci Soc Am J 66:299–305CrossRefGoogle Scholar
  46. Thirukkumaran CM, Parkinson D (2000) Microbial respiration, biomass, metabolic quotient and litter decomposition in a lodgepole pine forest floor amended with nitrogen and phosphorous fertilizers. Soil Biol Biochem 32:59–66 doi: 10.1016/S0038-0717(99)00129-7 CrossRefGoogle Scholar
  47. Titlyanova AA, Romanova IP, Kosykh NP et al (1999) Pattern and process in above-ground and below-ground components of grassland ecosystems. J Veg Sci 10:307–320 doi: 10.2307/3237060 CrossRefGoogle Scholar
  48. Vance ED, Brookes PC, Jenkinson DS (1987) An extraction method for measuring soil microbial biomass-C. Soil Biol Biochem 19:703–707 doi: 10.1016/0038-0717(87)90052-6 CrossRefGoogle Scholar
  49. Waldrop MP, Firestone MK (2006) Response of microbial community composition and function to soil climate change. Microb Ecol 52:716–724 doi: 10.1007/s00248-006-9103-3 PubMedCrossRefGoogle Scholar
  50. Wardle DA (2002) Communities and ecosystems: linking the aboveground and belowground components. Princeton University Press, Princeton, p 404Google Scholar
  51. West AW, Sparling GP (1986) Modifications to the substrate-induced respiration method to permit measurement of microbial biomass in soils of differing water contents. J Microbiol Methods 5:177–189 doi: 10.1016/0167-7012(86)90012-6 CrossRefGoogle Scholar
  52. Wikle CK (2003) Hierarchical models in environmental science. Int Stat Rev 71:181–199Google Scholar
  53. Williams MW, Brooks PD, Seastedt T (1998) Nitrogen and carbon soil dynamics in response to climate change in a high-elevation ecosystem in the Rocky Mountains, USA. Arct Alp Res 30:26–30 doi: 10.2307/1551742 CrossRefGoogle Scholar
  54. Wullschleger SD, Lynch JP, Berntson GM (1994) Modeling the belowground response of plants and soil biota to edaphic and climatic-change—what can we expect to gain. Plant Soil 165:149–160 doi: 10.1007/BF00009971 CrossRefGoogle Scholar
  55. Zak DR, Kling GW (2006) Microbial community composition and function across an arctic tundra landscape. Ecology 87:1659–1670 doi: 10.1890/0012-9658(2006)87[1659:MCCAFA]2.0.CO;2 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Jessica M. Cable
    • 1
  • Kiona Ogle
    • 1
    • 2
  • Anna P. Tyler
    • 3
  • Mitchell A. Pavao-Zuckerman
    • 3
  • Travis E. Huxman
    • 3
    • 4
  1. 1.Department of BotanyUniversity of WyomingLaramieUSA
  2. 2.Department of StatisticsUniversity of WyomingLaramieUSA
  3. 3.Department of Ecology and Evolutionary BiologyUniversity of ArizonaTucsonUSA
  4. 4.Biosphere 2, B2 EarthscienceUniversity of ArizonaTucsonUSA

Personalised recommendations