Advertisement

Plant and Soil

, Volume 319, Issue 1–2, pp 1–13 | Cite as

Root exclusion through trenching does not affect the isotopic composition of soil CO2 efflux

  • Nicolas Chemidlin Prévost-Bouré
  • Jérome Ngao
  • Daniel Berveiller
  • Damien Bonal
  • Claire Damesin
  • Eric Dufrêne
  • Jean-Christophe Lata
  • Valérie Le Dantec
  • Bernard Longdoz
  • Stéphane Ponton
  • Kamel Soudani
  • Daniel Epron
Regular Article

Abstract

Disentangling the autotrophic and heterotrophic components of soil CO2 efflux is critical to understanding the role of soil system in terrestrial carbon (C) cycling. In this study, we combined a stable C-isotope natural abundance approach with the trenched plot method to determine if root exclusion significantly affected the isotopic composition (δ13C) of soil CO2 efflux (RS). This study was performed in different forest ecosystems: a tropical rainforest and two temperate broadleaved forests, where trenched plots had previously been installed. At each site, RS and its δ13C (δ13CRs) tended to be lower in trenched plots than in control plots. Contrary to RS, δ13CRs differences were not significant. This observation is consistent with the small differences in δ13C measured on organic matter from root, litter and soil. The lack of an effect on δ13CRs by root exclusion could be from the small difference in δ13C between autotrophic and heterotrophic soil respirations, but further investigations are needed because of potential artefacts associated with the root exclusion technique.

Keywords

Stable carbon isotopes Natural abundance Soil respiration Trenched plot Rainforest Temperate forest 

Notes

Acknowledgements

The authors wish to acknowledge the “Office National des Forêts” for facilitating experimental work in Hesse and Barbeau forests, and CIRAD in Paracou forest. They also thank Jean-Yves Goret, Nathalie Têtefort, Elli Lentilus, Bernard Clerc, François Willm, Dyane Franey, Laurent Vanbostal and Jean-Yves Pontailler for their support during the field experiments in the different forests.

This work was supported by the French National programme ‘ACI/FNS ECCO, PNBC’ and by the ‘Observatoire de Recherche en Environnement “fonctionnement des écosystèmes forestiers’ (F-ORE-T).

Authors also acknowledge the ‘Métabolisme-Métabolome’ platform of the IFR87 and the ‘isotopic spectrometry’ platform of the IFR 110 for the isotopic facilities and Christan Hossan, Claude Brechet and Caroline Lelarge for isotopic analyses. The study complies with current French law.

References

  1. Andrews JA, Harrison KG, Matamala R, Schlesinger WH (1999) Separation of root respiration from total soil respiration using 13C labeling during free-air carbon dioxide enrichment (FACE). Soil Sci Soc Am J 63:1429–1435Google Scholar
  2. Baggs EM (2006) Partitioning the components of soil respiration: a research challenge. Plant Soil 284:1–5 doi: 10.1007/s11104-006-0047-7 CrossRefGoogle Scholar
  3. Balesdent J, Mariotti A (1996) Measurement of soil organic matter turnover using δ13C natural abundance. In: Boutton T (ed) Mass spectrometry (pp. 83–111). New York.Google Scholar
  4. Balesdent J, Girardin C, Mariotti A (1993) Site-Related δ13C of tree leaves and soil organic-matter in a temperate forest. Ecology 74:1713–1721 doi: 10.2307/1939930 CrossRefGoogle Scholar
  5. Bhudinperpal Singh, Nordgren A, Ottosson Lofvenius M, Högberg M, Mellander P, Högberg P (2003) Tree root and soil heterotrophic respiration as revealed by girdling of boreal Scots pine forest: extending observations beyond the first year. Plant Cell Environ 26:1287–1296 doi: 10.1046/j.1365-3040.2003.01053.x CrossRefGoogle Scholar
  6. Bonal D, Bosc A, Goret JY, Burban B, Gross P, Bonnefond JM, Elbers J, Ponton S, Epron D, Guehl JM, Granier A (2008) The impact of severe dry season on net ecosystem exchange in the neotropical rainforest of French Guiana. Glob Change Biol 14(8):1917–1933 doi: 10.1111/j.1365-2486.2008.01610.x CrossRefGoogle Scholar
  7. Boone RD, Nadelhoffer KJ, Canary JD, Kaye JP (1998) Roots exert a strong influence on the temperature sensitivity of soil respiration. Nature 396:570–572 doi: 10.1038/25119 CrossRefGoogle Scholar
  8. Bowden RD, Nadelhoffer KJ, Boone RD, Melillo JM, Garrison JB (1993) Contributions of aboveground litter, belowground litter, and root respiration to total soil respiration in a temperature mixed hardwood forest. Can J Res 23:1402–1407 doi: 10.1139/x93-177 CrossRefGoogle Scholar
  9. Bowling DR, Pataki DE, Randerson JT (2008) Carbon isotopes in terrestrial ecosystem pools and CO2 fluxes. New Phytol 178:24–40 doi: 10.1111/j.1469-8137.2007.02342.x PubMedCrossRefGoogle Scholar
  10. Buchmann N (2000) Biotic and abiotic factors controlling soil respiration rates in Picea abies stands. Soil Biol Biochem 32:1625–1635 doi: 10.1016/S0038-0717(00)00077-8 CrossRefGoogle Scholar
  11. Buchmann N, Guehl JM, Barigah TS, Ehleringer JR (1997) Interseasonal comparison of CO2 concentrations, isotopic composition, and carbon dynamics in an Amazonian rainforest (French Guiana). Oecologia 110:120–131 doi: 10.1007/s004420050140 CrossRefGoogle Scholar
  12. Chambers JQ, Tribuzy ES, Toledo LC, Crispim BF, Higuchi N, dos Santos J, Araujo AC, Kruijt B, Nobre AD, Trumbore SE (2004) Respiration from a tropical forest ecosystem: partitioning of sources and low carbon use efficiency. Ecol Appl 14:S72–S88 doi: 10.1890/01-6012 CrossRefGoogle Scholar
  13. Cheng W (1996) Measurement of rhizosphere respiration and organic matter decomposition using natural 13C. Plant Soil 183:263–268 doi: 10.1007/BF00011441 CrossRefGoogle Scholar
  14. Davidson GR (1995) The stable isotopic composition and measurement of carbon in soil CO2. Geochim Cosmochim Acta 59:2485–2489 doi: 10.1016/0016-7037(95)00143-3 CrossRefGoogle Scholar
  15. Ekblad A, Hogberg P (2001) Natural abundance of 13C in CO2 respired from forest soils reveals speed of link between tree photosynthesis and root respiration. Oecologia 127:305–308 doi: 10.1007/s004420100667 CrossRefGoogle Scholar
  16. Ekblad A, Boström B, Holm A, Comstedt D (2005) Forest soil respiration rate and δ13C is regulated by recent above ground weather conditions. Oecologia 143:136–142 doi: 10.1007/s00442-004-1776-z PubMedCrossRefGoogle Scholar
  17. Epron D, Le Dantec V, Dufrene E, Granier A (2001) Seasonal dynamics of soil carbon dioxide efflux and simulated rhizosphere respiration in a beech forest. Tree Physiol 21:145–152PubMedGoogle Scholar
  18. Epron D, Ngao J, Granier A (2004a) Interannual variation of soil respiration in a beech forest ecosystem over a six-year study. Ann Sci 61:499–505 doi: 10.1051/forest:2004044 CrossRefGoogle Scholar
  19. Epron D, Nouvellon Y, Roupsard O, Mouvondy W, Mabiala A, Saint-Andre L, Joffre R, Jourdan C, Bonnefond J-M, Bebigier P, Hamel O (2004b) Spatial and temporal variations of soil respiration in a eucalyptus plantation in Congo. For Ecol Manage 202:149–160 doi: 10.1016/j.foreco.2004.07.019 CrossRefGoogle Scholar
  20. Fang C, Moncrieff JB (2001) The dependence of soil CO2 efflux on temperature. Soil Biol Biochem 33:155–165 doi: 10.1016/S0038-0717(00)00125-5 CrossRefGoogle Scholar
  21. Fang C, Moncrieff JB, Gholz HL, Clark KL (1998) Soil CO2 efflux and its spatial variation in a Florida slash pine plantation. Plant Soil 205:135–146 doi: 10.1023/A:1004304309827 CrossRefGoogle Scholar
  22. Fessenden JE, Ehleringer JR (2003) Temporal variation in δ13C of ecosystem respiration in the Pacific Northwest: links to moisture stress. Oecologia 136:129–136 doi: 10.1007/s00442-003-1260-1 PubMedCrossRefGoogle Scholar
  23. Formanek P, Ambus P (2004) Assessing the use of δ13C natural abundance in separation of root and microbial respiration in a Danish beech (Fagus sylvatica L.) forest. Rapid Commun Mass Spectrom 18:897–902 doi: 10.1002/rcm.1424 PubMedCrossRefGoogle Scholar
  24. Gaumont-Guay D, Black TA, Griffis TJ, Barr AG, Morgenstern K, Jassal RS, Nesic Z (2006) Influence of temperature and drought on seasonal and interannual variations of soil, bole and ecosystem respiration in a boreal aspen stand. Agric For Meteorol 140:203–219 doi: 10.1016/j.agrformet.2006.08.002 CrossRefGoogle Scholar
  25. Gottlicher SG, Steinmann K, Betson NR, Hogberg P (2006) The dependence of soil microbial activity on recent photosynthate from trees. Plant Soil 287:85–94 doi: 10.1007/s11104-006-0062-8 CrossRefGoogle Scholar
  26. Gourlet-Fleury S, Laroussinie O, Guehl J (2004) Ecology and management of a Neotropical rainforest. Lessons drawn from Paracou, a long- term experimental research site in French Guiana. Elsevier, Paris, p 350Google Scholar
  27. Granier A, Ceschia E, Damesin C, Dufrene E, Epron D, Gross P, Lebaube S, Le Dantec V, Le Goff N, Lemoine D, Lucot E, Ottorini JM, Pontailler JY, Saugier B (2000) The carbon balance of a young Beech forest. Funct Ecol 14:312–325 doi: 10.1046/j.1365-2435.2000.00434.x CrossRefGoogle Scholar
  28. Högberg P, Nordgren A, Buchmann N, Taylor A, Ekblad A, Högberg M, Nyberg G, Ottoson-Löfvenius M, Read D (2001) Large-scale forest gridling shows that current photosynthesis drives soil respiration. Nature 411:789–792 doi: 10.1038/35081058 PubMedCrossRefGoogle Scholar
  29. Janssens IA, Lankreijer H, Matteucci G, Kowalski AS, Buchmann N, Epron D, Pilegaard K, Kutsch W, Longdoz B, Grunwald T, Montagnani L, Dore S, Rebmann C, Moors EJ, Grelle A, Rannik U, Morgenstern K, Oltchev S, Clement R, Gudmundsson J, Minerbi S, Berbigier P, Ibrom A, Moncrieff J, Aubinet M, Bernhofer C, Jensen NO, Vesala T, Granier A, Schulze ED, Lindroth A, Dolman AJ, Jarvis PG, Ceulemans R, Valentini R (2001) Productivity overshadows temperature in determining soil and ecosystem respiration across European forests. Glob Change Biol 7:269–278 doi: 10.1046/j.1365-2486.2001.00412.x CrossRefGoogle Scholar
  30. Keeling CD (1958) The concentration and isotopic abundance of atmospheric carbon dioxide in rural areas. Geochim Cosmochim Acta 13:322–334 doi: 10.1016/0016-7037(58)90033-4 CrossRefGoogle Scholar
  31. Kuzyakov Y (2006) Sources of CO2 efflux from soil and review of partitioning methods. Soil Biol Biochem 38:425–448 doi: 10.1016/j.soilbio.2005.08.020 CrossRefGoogle Scholar
  32. Kuzyakov Y, Ehrensberger H, Stahr K (2001) Carbon partitioning and below-ground translocation by Lolium perenne. Soil Biol Biochem 33:61–74 doi: 10.1016/S0038-0717(00)00115-2 CrossRefGoogle Scholar
  33. Lalonde RG, Prescott CE (2007) Partitioning heterotrophic and rhizospheric soil respiration in a mature Douglas-fir (Pseudotsuga menziesii) forest. Can J Res 37:1287–1297 doi: 10.1139/X07-019 CrossRefGoogle Scholar
  34. Le Dantec V, Epron D, Dufrêne E (1999) Soil CO2 efflux in a beech forest: comparison of two closed dynamic systems. Plant Soil 214:125–132 doi: 10.1023/A:1004737909168 CrossRefGoogle Scholar
  35. Lee MS, Nakane K, Nakatsubo T, Koizumi H (2003) Seasonal changes in the contribution of root respiration to total soil respiration in a cool-temperate deciduous forest. Plant Soil 255:311–318 doi: 10.1023/A:1026192607512 CrossRefGoogle Scholar
  36. Li YQ, Xu M, Zou XM (2006) Heterotrophic soil respiration in relation to environmental factors and microbial biomass in two wet tropical forests. Plant Soil 281:193–201 doi: 10.1007/s11104-005-4249-1 CrossRefGoogle Scholar
  37. Longdoz B, Yernaux M, Aubinet M (2000) Soil CO2 efflux measurements in a mixed forest: impact of chamber disturbances, spatial variability and seasonal evolution. Glob Change Biol 6:907–917 doi: 10.1046/j.1365-2486.2000.00369.x CrossRefGoogle Scholar
  38. Malhi Y, Baldocchi DD, Jarvis PG (1999) The carbon balance of tropical, temperate and boreal forests. Plant Cell Environ 22:715–740 doi: 10.1046/j.1365-3040.1999.00453.x CrossRefGoogle Scholar
  39. Maunoury F, Berveiller D, Lelarge C, Pontailler JY, Vanbostal L, Damesin C (2007) Seasonal, daily and diurnal variations in the stable carbon isotope composition of carbon dioxide respired by tree trunks in a deciduous oak forest. Oecologia 151:268–279 doi: 10.1007/s00442-006-0592-z PubMedCrossRefGoogle Scholar
  40. Miller JB, Tans PP (2003) Calculating isotopic fractionation from atmospheric measurements at various scales. Tellus B Chem Phys Meterol 55:207–214 doi: 10.1034/j.1600-0889.2003.00020.x CrossRefGoogle Scholar
  41. Mortazavi B, Chanton JP, Prater JL, Oishi AC, Oren R, Katul G (2005) Temporal variability in 13C of respired CO2 in a pine and a hardwood forest subject to similar climatic conditions. Oecologia 142:57–69 doi: 10.1007/s00442-004-1692-2 PubMedCrossRefGoogle Scholar
  42. Murtaugh PA (2007) Simplicity and complexity in ecological data analysis. Ecology 88:56–62 doi: 10.1890/0012-9658(2007)88[56:SACIED]2.0.CO;2 PubMedCrossRefGoogle Scholar
  43. Ngao J, Epron D, Brechet C, Granier A (2005) Estimating the contribution of leaf litter decomposition to soil CO2 efflux in a beech forest using 13C-depleted litter. Glob Change Biol 11:1768–1776 doi: 10.1111/j.1365-2486.2004.01014.x CrossRefGoogle Scholar
  44. Ngao J, Longdoz B, Granier A, Epron D (2007) Estimation of autotrophic and heterotrophic components of soil respiration by trenching is sensitive to corrections for root decomposition and changes in soil water content. Plant Soil 301:99–110 doi: 10.1007/s11104-007-9425-z CrossRefGoogle Scholar
  45. Pataki DE, Ehleringer JR, Flanagan LB, Yakir D, Bowling DR, Still CJ, Buchmann N, Kaplan JO, Berry JA (2003) The application and interpretation of keeling plots in terrestrial carbon cycle research. Global Biogeochem Cycles 17:1022–1037 doi: 10.1029/2001GB001850 CrossRefGoogle Scholar
  46. Phillips DL, Gregg JW (2001) Uncertainty in source partitioning using stable isotopes. Oecologia 127:171–179 doi: 10.1007/s004420000578 CrossRefGoogle Scholar
  47. Phillips DL, Gregg JW (2003) Source partitioning using stable isotopes: coping with too many sources. Oecologia 136:261–269 doi: 10.1007/s00442-003-1218-3 PubMedCrossRefGoogle Scholar
  48. Rochette P, Flanagan LB, Gregorich EG (1999) Separating soil respiration into plant and soil components using analyses of the natural abundance of 13C. Soil Sci Soc Am J 63:1207–1213Google Scholar
  49. Saiz G, Green C, Butterbach-Bahl K, Kiese R, Avitabile V, Farrell EP (2006) Seasonal and spatial variability of soil respiration in four Sitka spruce stands. Plant Soil 287:161–176 doi: 10.1007/s11104-006-9052-0 CrossRefGoogle Scholar
  50. Salimon CI, Davidson EA, Victoria RL, Melo AWF (2004) CO2 flux from soil in pastures and forests in southwestern Amazonia. Glob Change Biol 10:833–843 doi: 10.1111/j.1529-8817.2003.00776.x CrossRefGoogle Scholar
  51. Sokal RR, Rohlf FJ (1995) Biometry: the principles and practice of statistics in biological research. W. H. Freeman and Co., New York, p 887Google Scholar
  52. Steinmann KTW, Siegwolf R, Saurer M, Korner C (2004) Carbon fluxes to the soil in a mature temperate forest assessed by 13C isotope tracing. Oecologia 141:489–501 doi: 10.1007/s00442-004-1674-4 PubMedCrossRefGoogle Scholar
  53. Subke J-A, Hahn V, Battipaglia G, Linder S, Buchmann N, Cotrufo MF (2004) Feedback interactions between needle litter decomposition and rhizosphere activity. Oecologia 139:551–559 doi: 10.1007/s00442-004-1540-4 PubMedCrossRefGoogle Scholar
  54. Subke JA, Inglima I, Cotrufo MF (2006) Trends and methodological impacts in soil CO2 efflux partitioning: a metaanalytical review. Glob Change Biol 12:921–943 doi: 10.1111/j.1365-2486.2006.01117.x CrossRefGoogle Scholar
  55. Tu K, Dawson T (2005) Partitioning Ecosystem Respiration Using Stable Isotope Analysis of CO2. In: Flanagan LB, Ehleringer JR, Pataki DE, Mooney M (eds) Stable isotopes and biosphere–atmosphere interactions: Processes and biological controls. Elsevier Academic, San Diego, pp 125–135CrossRefGoogle Scholar
  56. Yim MH, Joo SJ, Shutou K, Nakane K (2003) Spatial variability of soil respiration in a larch plantation: estimation of the number of sampling points required. For Ecol Manage 175:585–588 doi: 10.1016/S0378-1127(02)00222-0 CrossRefGoogle Scholar
  57. Zobitz JM, Keener JP, Schnyder H, Bowling DR (2006) Sensitivity analysis and quantification of uncertainty for isotopic mixing relationships in carbon cycle research. Agric For Meteorol 136:56–75 doi: 10.1016/j.agrformet.2006.01.003 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Nicolas Chemidlin Prévost-Bouré
    • 1
  • Jérome Ngao
    • 2
    • 1
  • Daniel Berveiller
    • 1
  • Damien Bonal
    • 3
  • Claire Damesin
    • 1
  • Eric Dufrêne
    • 1
  • Jean-Christophe Lata
    • 1
  • Valérie Le Dantec
    • 4
  • Bernard Longdoz
    • 2
  • Stéphane Ponton
    • 3
    • 2
  • Kamel Soudani
    • 1
  • Daniel Epron
    • 5
  1. 1.Univ Paris-Sud, Laboratoire Ecologie Systématique et Evolution, AgroParisTechCNRSParisFrance
  2. 2.INRA, UMR INRA UHP 1137 Ecologie et Ecophysiologie ForestièreCentre INRA NancyChampenouxFrance
  3. 3.INRA, UMR EcofogFrench GuianaKourouFrance
  4. 4.UMR CESBIOÉquipe Modélisation du Fonctionnement des ÉcosystèmesToulouseFrance
  5. 5.Nancy Université, UMR INRA UHP 1137 Ecologie et Ecophysiologie ForestièreUniversité Henri PoincaréVandoeuvre-lès-NancyFrance

Personalised recommendations