Advertisement

Plant and Soil

, Volume 318, Issue 1–2, pp 217–228 | Cite as

Factors regulating litter mass loss and lignin degradation in late decomposition stages

  • Amalia Virzo De Santo
  • Anna De Marco
  • Angelo Fierro
  • Björn Berg
  • Flora A. Rutigliano
Regular Article

Abstract

We studied late-stages decomposition of four types of coniferous needle and three types of deciduous leaf litter at two sites, one nutrient-poor boreal and one nutrient-rich temperate. The late stage was identified by that reached by litters at the onset of net loss of lignin mass, i.e. at about 1 year after the incubation when the highest amount of lignin had been detected; the study extended over the following 2 year period. Decomposition rates were significantly lower at the boreal than at the temperate site and did not differ between needle litter and leaf litter. In the boreal forest: (1) mass-loss was positively correlated with N and Mn release, (2) Mn concentration at the start of the late stage was positively correlated with lignin decay, (3) Ca concentration was negatively correlated to litter mass loss and lignin decay. In the temperate forest neither lignin, N, Mn, and Ca concentration at the start of the late stage, nor their dynamics were related to litter decomposition rates and lignin decay. In leaf litter mass-loss and lignin decay were positively correlated with N and Ca release and with Ca concentration. In needle litter mass-loss was positively correlated to Mn release and N concentration negatively with lignin decay. We concluded that Ca, N and Mn have different roles in controlling lignin decay depending on type of litter and site conditions.

Keywords

Litter Mn N and Ca concentrations Temperate forest Boreal forest Deciduous leaf litter Coniferous needle litter 

Notes

Acknowledgements

This work was carried out while Björn Berg was a guest scientist at the Department of Structural and Functional Biology, University of Naples Federico II, financed by the program “Incentivazione alla mobilità di studiosi stranieri e italiani residenti all’estero”. The research was funded by Ministero dell’Università e della Ricerca-Italy. Dr. Paola Vittozzi is gratefully acknowledged for lignin analyses.

References

  1. Andersson S, Nilsson SI, Saetre P (2000) Leaching of DOC and DON in mor humus as affected by temperature and pH. Soil Biol Biochem 32:1–10 doi: 10.1016/S0038-0717(99)00103-0 CrossRefGoogle Scholar
  2. Arnott HJ, Webb MA (1983) The structure and formation of calcium oxalate crystals deposits on the hyphae of a wood rot fungus. Scanning Microsc 4:1747–1758Google Scholar
  3. Arocena JM, Glowa KR, Massicotte HB (2001) Calcium-rich hypha encrustations on Piloderma. Mycorrhiza 10:209–215 doi: 10.1007/s005720000082 CrossRefGoogle Scholar
  4. Axelsson B, Bråkenhielm S (1980) Investigation sites of the Swedish Coniferous Forest Project. Biological and physiographical features. Ecol Bull 32:25–64Google Scholar
  5. Batty LC, Younger PL (2007) The effect of pH on plant litter decomposition and metal cycling in wetland mesocosms supplied with mine drainage. Chemosphere 66:158–164 doi: 10.1016/j.chemosphere.2006.05.039 PubMedCrossRefGoogle Scholar
  6. Berg B, Ekbohm G (1983) Nitrogen immobilization in decomposing needle litter at variable carbon: nitrogen ratios. Ecology 64:63–67 doi: 10.2307/1937329 CrossRefGoogle Scholar
  7. Berg B, Lundmark J-E (1987) Decomposition of needle litter in lodgepole pine and Scots pine monocultures - a comparison. Scand J For Res 2:3–12CrossRefGoogle Scholar
  8. Berg B, McClaugherty CA (2008) Plant Litter: Decomposition, Humus Formation, Carbon Sequestration, 2nd edn. Springer Verlag Heidelberg, BerlinGoogle Scholar
  9. Berg B, Meentemeyer V (2002) Litter quality in a north European transect versus carbon storage potential. Plant Soil 242:83–92 doi: 10.1023/A:1019637807021 CrossRefGoogle Scholar
  10. Berg B, Staaf H (1981) Leaching, accumulation and release of nitrogen from decomposing forest litter. In: Terrestrial Nitrogen Cycles. Processes, Ecosystem Strategies and management Impact. Ecol Bull (Stockh) 33:163–178Google Scholar
  11. Berg B, Hannus K, Popoff T, Theander O (1982) Changes in organic-chemical components during decomposition. Long-term decomposition in a Scots pine forest. Can J Bot 60:1310–1319Google Scholar
  12. Berg B, McClaugherty CA, Johansson M-B (1993) Litter mass loss rate in late stages of decomposition at same climatically and nutritionally different pine sites. Long-term decomposition in a Scots pine forest VIII. Can J Bot 71:680–692Google Scholar
  13. Berg B, Ekbohm G, Johansson M-B, McClaugherty C, Rutigliano FA, Virzo De Santo A (1996) Maximum decomposition limits of forest litter types - a synthesis. Can J Bot 74:659–672CrossRefGoogle Scholar
  14. Berg B, McClaugherty C, Johansson M-B (1997) Chemical changes in decomposing plant litter can be systemized with respect to the litter’s initial. Reports from the Departments in Forest Ecology and Forest Soil, Swedish University of Agricultural Science. Report 74:85Google Scholar
  15. Berg B, Johansson M-B, Meentemeyer V (2000) Litter decomposition in a transect of Norway spruce forests: substrate quality and climate control of mass-loss rates. Can J Res 30:1136–1147 doi: 10.1139/cjfr-30-7-1136 CrossRefGoogle Scholar
  16. Berg B, McClaugherty CA, Virzo De Santo A, Johnson D (2001) Humus buildup in boreal forests-effects of litter fall and its N concentration. Can J Res 31:988–998 doi: 10.1139/cjfr-31-6-988 CrossRefGoogle Scholar
  17. Berg B, Virzo De Santo A, Rutigliano FA, Fierro A, Ekbohm G (2003) Limit values for plant litter decomposing in two contrasting soils—influence of litter elemental composition. Acta Oecol 24:295–302 doi: 10.1016/j.actao.2003.08.002 CrossRefGoogle Scholar
  18. Berg B, Steffen K, McClaugherty C (2007) Litter decomposition rates as dependent on litter Mn concentration. Biogeochemistry 85:29–39 doi: 10.1007/s10533-006-9050-6 CrossRefGoogle Scholar
  19. Blair JM (1988) Nutrient release from decomposing foliar litter of three tree species with special reference to calcium, magnesium and potassium dynamics. Plant Soil 110:49–55 doi: 10.1007/BF02143538 CrossRefGoogle Scholar
  20. Caputo G (1966–1967) Richerche sulla vegetazione forestale del gruppo del Taburno Campasauro (Appenino Campano). Delpinoa 8–9:91–128Google Scholar
  21. Davey M, Berg B, Emmett B, Rowland P (2007) Controls of foliar litter decomposition and implications for C sequestration in oak woodlands. Can J Bot 85:16–24 doi: 10.1139/B06-150 CrossRefGoogle Scholar
  22. Eriksson K-E, Blanchette RA, Ander P (1990) Microbial and enzymatic degradation of wood and wood components. Springer Series in Wood Science. Springer Verlag, BerlinGoogle Scholar
  23. Fog K (1988) The effect of added nitrogen on the rate of decomposition of organic matter. Biol Rev Camb Philos Soc 63:433–462 doi: 10.1111/j.1469-185X.1988.tb00725.x CrossRefGoogle Scholar
  24. Fogel R, Cromack K (1977) Effect of habitat and substrate quality on Douglas fir litter decomposition in Western Oregon. Can J Bot 55:1632–1640 doi: 10.1139/b77-190 CrossRefGoogle Scholar
  25. Goering HK, Van Soest PJ (1970) Forage fiber analysis (apparatus, reagents, procedures and some applications). USDA Agricultural Handbook No. 379Google Scholar
  26. Hobbie SE (2000) Interactions between litter lignin and soil nitrogen availability during leaf litter decomposition in a Hawaiian montane forest. Ecosystems (N Y, Print) 3:484–494 doi: 10.1007/s100210000042 CrossRefGoogle Scholar
  27. Hobbie SE, Vitousek PM (2000) Nutrient limitation of decomposition in Hawaiian montane forests. Ecology 81:1867–1877CrossRefGoogle Scholar
  28. Hobbie SE, Reich PB, Oleksyn J, Ogdahl M, Zytkowiak R, Hale C, Karowleski P (2006) Tree species effects on decomposition and forest floor dynamics in a common garden. Ecology 87:2288–2297 doi: 10.1890/0012-9658(2006)87[2288:TSEODA]2.0.CO;2 PubMedCrossRefGoogle Scholar
  29. Hofrichter M (2002) Review: Lignin conversion by manganese peroxidase (MnP). Enzyme Microb Technol 30:454–466 doi: 10.1016/S0141-0229(01)00528-2 CrossRefGoogle Scholar
  30. Kurz-Besson C, Coûteaux MM, Berg B, Remacle J, Ribeiro C, Romanyà J, Thiéry JM (2006) A climate response function explaining most of the variation of the forest floor needle mass and the needle decomposition in pine forest across Europe. Plant Soil 285:97–114 doi: 10.1007/s11104-006-0061-9 CrossRefGoogle Scholar
  31. Lakanen E, Erviö R (1971) A comparison of eight extractants for the determination of plant available micronutrients in soils. Acta Agr Fenn 123:223–232Google Scholar
  32. Lawrey JD (1977) Elemental partitioning in Pinus resinosa leaf litter and associated fungi. Mycologia 69:1121–1128 doi: 10.2307/3758934 CrossRefGoogle Scholar
  33. Persson T, Wessen P, Lundkvist H, Wiren A, Hyvönen R (1989) Effects of acidification and liming on carbon and nitrogen mineralization and soil organisms in mor humus. Water Air Soil Pollut 45:77–96Google Scholar
  34. Piccolo A, Spaccini R, Haberhauer G, Gerzabek MH (1999) Increased sequestration of organic carbon in soil by hydrophobic protection. Naturwissenschaften 86:496–499 doi: 10.1007/s001140050662 PubMedCrossRefGoogle Scholar
  35. Rutigliano FA, Virzo De Santo A, Berg B, Alfani A, Fioretto A (1996) Lignin decomposition in decaying leaves of Fagus sylvatica L. and needles of Abies alba Mill. Soil Biol Biochem 28:101–106 doi: 10.1016/0038-0717(95)00120-4 CrossRefGoogle Scholar
  36. Simmons JA, Yavitt JB, Fahey TJ (1996) Liming effects on N dynamics of a northern hardwood forest floor. Biogeochemistry 32:221–244 doi: 10.1007/BF02187140 CrossRefGoogle Scholar
  37. Sjögersten S, Wookey PA (2004) decomposition of mountain birch leaf litter at the forest-tundra ecotone in the Fennoscandian mountains in relation to climate and soil conditions. Plant Soil 262:215–227 doi: 10.1023/B:PLSO.0000037044.63113.fe CrossRefGoogle Scholar
  38. Virzo De Santo A, Berg B, Rutigliano FA, Alfani A, Fioretto A (1993) Factors regulating early-stage decomposition of needle litters in five different coniferous forests. Soil Biol Biochem 25:1423–1433 doi: 10.1016/0038-0717(93)90057-I CrossRefGoogle Scholar
  39. Virzo De Santo A, Rutigliano FA, Berg B, Fioretto A, Fierro AR (1998) Nitrogen dynamics of decomposing needle litters in three coniferous forests of the Mediterranean area. Fresen Environ Bull 7:510–517Google Scholar
  40. Virzo De Santo A, Fierro AR, Berg B, Rutigliano FA, De Marco A (2002) Heavy metals and litter decomposition in coniferous forests. In: Violante A, Huang PM, Bollag J-M, Gianfreda L (Eds.) Soil Mineral-Organic Matter-Microorganism Interactions and Ecosystem Health. Netherlands, Amsterdam, Elsevier Science B.V., V. 28A, pp. 63–78Google Scholar
  41. Whitney KD, Arnott HJ (1986) Calcium oxalate crystals and basidiocarp dehiscence in Geastrum saccatum (Gasteromycetes). Mycology 78:649–656 doi: 10.2307/3807778 CrossRefGoogle Scholar
  42. Whitney KD, Arnott HJ (1987) Calcium oxalate crystal morphology and development in Agaricus bisporus. Mycology 79:180–187 doi: 10.2307/3807650 CrossRefGoogle Scholar
  43. Wookey PA, Ineson P (1991) Chemical changes in decomposing forest litter in response to atmospheric sulphur dioxide. J Soil Sci 42:615–628 doi: 10.1111/j.1365-2389.1991.tb00108.x CrossRefGoogle Scholar
  44. Wookey PA, Ineson P, Mansfield TA (1991) Effects of atmospheric sulphur dioxide on microbial activity in decomposing forest litter. Agric Ecosyst Environ 33:263–283 doi: 10.1016/0167-8809(91)90006-J CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Amalia Virzo De Santo
    • 1
  • Anna De Marco
    • 1
  • Angelo Fierro
    • 1
  • Björn Berg
    • 1
  • Flora A. Rutigliano
    • 2
  1. 1.Dipartimento Biologia Strutturale e FunzionaleComplesso UniversitarioNapoliItaly
  2. 2.Dipartimento di Scienze AmbientaliSeconda Università degli Studi di Napoli via Vivaldi 43CasertaItaly

Personalised recommendations