Plant and Soil

, Volume 315, Issue 1–2, pp 273–283 | Cite as

Inhibition of net nitrification activity in a Mediterranean woodland: possible role of chemicals produced by Arbutus unedo

  • Simona Castaldi
  • Anna Carfora
  • Antonio Fiorentino
  • Angela Natale
  • Anna Messere
  • Franco Miglietta
  • M. Francesca Cotrufo
Regular Article


Nitrification is a key biological process for the control of soil NO3 availability and N losses from terrestrial ecosystems. The study investigates the causes for the absence of net nitrification activity in the soil of a Mediterranean monospecific woodland of Arbutus unedo, focusing in particular on the possible role of chemicals produced by this plant. The mineral N pool, net rates of mineralization and nitrification were measured in the soil top 10 cm over 18 months. Raw extracts of leaves and roots of Arbutus unedo and soil underneath Arbutus plant canopy were purified using chromatographic techniques and the structure of chemicals was defined using spectroscopic and spectrometric methods. Leaf extracts (raw, aqueous and organic fractions) were tested for their toxicity on net nitrification, using a test soil. Field and laboratory incubations showed soil NO3 concentration below the detection limit over the whole study period, despite the significant NH4 + availability. Toxicity tests indicated that more than 400 μg of extract g−1 dry soil were needed to have more than 50% reduction of net NO3 production. Gallocatechin and catechin were among the most abundant chemicals in the extracts of leaves, roots and soil. Their soil concentration was significantly higher than the annual calculated input via leaf litter, and it was in the range of toxic concentrations, as deduced from the dose-response curve of the toxicity test. Data support the hypothesis that plant produced chemicals might be involved in the limited net nitrate production in this Mediterranean woodland.


Allelopathy N cycle Toxicity Leaf extract NO3 (+)-gallocatechin 



Research was supported by the European Community (MIND projects EVK2-2001-00296, NitroEurope GOCE-CT-17841) and CarboItaly (FISR, Italian Ministry of Environment). We thank Alessandro Zaldei and Giorgio Alberti for their help with field work.


  1. Akhtardzhiev K (1966) Presence of arbutin and tannins in native representatives of family Ericaceae. Pharmazie 21:59–60Google Scholar
  2. Alonso MC, Puig D, Silgoner I, Grasserbauer M, Barceló D (1998) Determination of priority phenolic compounds in soil samples by various extraction methods followed by liquid chromatography-atmospheric pressure chemical ionisation mass spectrometry. J Chromatogr A 823:231–239 doi: 10.1016/S0021-9673(98)00110-1 CrossRefGoogle Scholar
  3. Bais PH, Walker TS, Stermitz FR, Hufbauer RA, Vivanco JM (2002) Enantiomeric-dependent phytotoxic and antimicrobial activity of (±)-catechin. A rhizosecreted racemic mixture from spotted knapweed. Plant Physiol 128:1173–1179 doi: 10.1104/pp.011019 PubMedCrossRefGoogle Scholar
  4. Baldwin IT, Olson RK, Reiners WA (1983) Protein binding phenolics and the inhibition of the nitrification in subalpine balsam fir soils. Soil Biol Biochem 15:419–423 doi: 10.1016/0038-0717(83)90006-8 CrossRefGoogle Scholar
  5. Bertin C, Yang X, Weston LA (2003) The role of root exudates and allelochemicals in the rizosphere. Plant Soil 256:67–83 doi: 10.1023/A:1026290508166 CrossRefGoogle Scholar
  6. Carnol M, Kowalchuk GA, De Boer W (1998) Liming effects on the ammonia-oxidising bacteria in acid forest soils. Poster, 8th International Symposium on Microbial Ecology, HalifaxGoogle Scholar
  7. Castaldi S, Aragosa D (2002) Factors influencing nitrification and denitrification variability in a natural and fire disturbed Mediterranean shrubland. Biol Fertil Soils 36:418–425 doi: 10.1007/s00374-002-0549-2 CrossRefGoogle Scholar
  8. Castells E, Josep Peñuelas J, Valentine DW (2003) Influence of the phenolic compound bearing species Ledum palustre on soil N cycling in a boreal hardwood forest. Plant Soil 251:155–166 doi: 10.1023/A:1022923114577 CrossRefGoogle Scholar
  9. De Boer W, Kowalchuk GA (2001) Nitrification in acid soils: micro-organisms and mechanisms. Soil Biol Biochem 33:853–866 doi: 10.1016/S0038-0717(00)00247-9 CrossRefGoogle Scholar
  10. De Boer W, Tietema A, Klein Gunnewiek PJA, Laanbroek HJ (1992) The autotrophic ammonium-oxidizing community in a nitrogen-saturated acid forest soil in relation to pH-dependent nitrifying activity. Soil Biol Biochem 24:229–234 doi: 10.1016/0038-0717(92)90223-K CrossRefGoogle Scholar
  11. DeLuca TH, MacKenzie MD, Gundale MJ, Holben WE (2006) Wildfire-produced charcoal directly influences nitrogen cycling in ponderosa pine forests. Soil Sci Soc Am J 70:448–453 doi: 10.2136/sssaj2005.0096 CrossRefGoogle Scholar
  12. DeLuca TH, Nilsson MC, Zackrisson O (2002) Nitrogen mineralization and phenol accumulation along a fire chronosequence in Northern Sweden. Oecologia 133:206–214 doi: 10.1007/s00442-002-1025-2 CrossRefGoogle Scholar
  13. Erickson A, Ramsewak RS, Smucker AJ, Nair MGJ (2000) Nitrification inhibitors from the roots of Leucaena leucocephala. J Agric Food Chem 48:6174–6177 doi: 10.1021/jf991382z PubMedCrossRefGoogle Scholar
  14. FAO 1998 World reference base for soil resources. World Soil Resources, Report no. 84, RomeGoogle Scholar
  15. Fiorentino A, Castaldi S, D’Abrosca B, Natale A, Carfora A, Messere A et al (2007) Polyphenols from the hydroalcoholic extract of Arbutus unedo living in a monospecific Mediterranean woodland. Biochem Syst Ecol 35:809–811 doi: 10.1016/j.bse.2007.04.005 CrossRefGoogle Scholar
  16. Gallardo A, Merino J (1998) Soil nitrogen dynamics in response to carbon increase in a Mediterranean shrubland of SW Spain. Soil Biol Biochem 30:1349–1358 doi: 10.1016/S0038-0717(97)00265-4 CrossRefGoogle Scholar
  17. Granli T, Bøckman OC (1994) Nitrous oxide from agriculture. Nor J Agric Sci 12(supplement):128Google Scholar
  18. Gundale MJ, DeLuca TH (2006) Temperature and source material influence ecological attributes of ponderosa pine and Douglas-fir charcoal. For Ecol Manag 231:86–93 doi: 10.1016/j.foreco.2006.05.004 CrossRefGoogle Scholar
  19. Hastings RC, Butler C, Singleton I, Saunders JR, McCarthy AJ (2000) Analysis of ammonia-oxidizing bacteria populations in acid forest soil during conditions of moisture limitation. Lett Appl Microbiol 30:14–18 doi: 10.1046/j.1472-765x.2000.00630.x PubMedCrossRefGoogle Scholar
  20. Howard PJA, Howard DM (1991) Inhibition of nitrification by aqueous extracts of tree leaf litters. Rev Ecol Biol Sol 28:255–264Google Scholar
  21. Kandeler E (1995a) N-mineralization under aerobic conditions. In: Schinner F, Kandeler E, Ohlinger R, Margesin R (eds) Methods in soil biology. Springer, Heidelberg, pp 139–141Google Scholar
  22. Kandeler E (1995b) Nitrification during long term incubation. In: Schinner F, Kandeler E, Ohlinger R, Margesin R (eds) Methods in soil biology. Springer, Heidelberg, pp 149–151Google Scholar
  23. MacKenzie MD, DeLuca TH (2006) Charcoal and shrubs modify soil processes in ponderosa pine forests of western Montana. Plant Soil 287:257–266 doi: 10.1007/s11104-006-9074-7 CrossRefGoogle Scholar
  24. Martínez-Espinosa RM, Lledó B, Marhuenda-Egea FC, Bonete MJ (2007) The effect of ammonium on assimilatory nitrate reduction in the haloarchaeon Haloferax mediterranei. Extremophiles 11:759–767 doi: 10.1007/s00792-007-0095-9 PubMedCrossRefGoogle Scholar
  25. McCarty GW, Bremner JM (1986) Inhibition of nitrification in soil by acetylene compounds. SSSA 50:1198–1201Google Scholar
  26. Nahoko U, Keiji M, Fumiyuki K, Gisho H, Akiko T, Junko NS et al (2002) Trypanocidal terpenoids from Laurus nobilis L. Chem Pharm Bull (Tokyo) 50:1514–1516 doi: 10.1248/cpb.50.1514 CrossRefGoogle Scholar
  27. Niemi L, Wennstrom A, Ericson L (2005) Insect feeding preferences and plant phenolic glucosides in the system Gonioctena linnaeana—Salix triandra. Entomol Exp Appl 115:61–66 doi: 10.1111/j.1570-7458.2005.00269.x CrossRefGoogle Scholar
  28. Northup RR, Zengshou Y, Dahlgren RA, Vogt KA (1995) Polyphenol control of nitrogen release from pine litter. Nature 377:227–229 doi: 10.1038/377227a0 CrossRefGoogle Scholar
  29. Paavolainen L, Kitunen V, Smolander A (1998) Inhibition of nitrification in forest soil by monoterpenes. Plant Soil 205:147–154 doi: 10.1023/A:1004335419358 CrossRefGoogle Scholar
  30. Pennington PI, Ellis RC (1993) Autotrophic and heterotrophic nitrification in acidic forest and native grassland soils. Soil Biol Biochem 25:1399–1408 doi: 10.1016/0038-0717(93)90054-F CrossRefGoogle Scholar
  31. Pomponio R, Gotti R, Santagati NA, Cavrini V (2003) Analysis of catechins in extracts of Cistus species by microemulsion electrokinetic chromatography. J Chromatogr A 990:215–223 doi: 10.1016/S0021-9673(02)02010-1 PubMedCrossRefGoogle Scholar
  32. Putnam AR (1988) Allelochemicals from plants as herbicides. Weed Technol 2:510–518Google Scholar
  33. Revilla E, Cejudo FJ, Llobell A, Paneque A (1986) Short-term ammonium inhibition of nitrate uptake by Azotobacter chroococcum. Arch Microbiol 144:187–190 doi: 10.1007/BF00410944 CrossRefGoogle Scholar
  34. Rice E, Pancholy S (1973) Inhibition of nitrification by climax ecosystems. II. Additional evidence and possible role of tannins. Am J Bot 60:691–702 doi: 10.2307/2441448 CrossRefGoogle Scholar
  35. Robertson GP (1982a) Nitrification in forested ecosystems. Philos T R Soc 296:445–457 doi: 10.1098/rstb.1982.0019 CrossRefGoogle Scholar
  36. Robertson GP (1982b) Factors regulating nitrification in primary and secondary succession. Ecology 63:1561–1573 doi: 10.2307/1938880 CrossRefGoogle Scholar
  37. Rogosic J, Estell RE, Skobic D, Martinovic A, Maric S (2006) Role of species diversity and secondary compounds complementary on diet selection of Mediterranean shrubs by goats. J Chem Ecol 32:1279–1287 doi: 10.1007/s10886-006-9084-1 PubMedCrossRefGoogle Scholar
  38. Rovira P, Vallejo VR (1997) Organic carbon and nitrogen mineralization under Mediterranean climatic conditions: the effects of incubation depth. Soil Biol Biochem 29:1509–1520 doi: 10.1016/S0038-0717(97)00052-7 CrossRefGoogle Scholar
  39. Schimel JP, VanCleve K, Cates RG, Clausen TP, Reichardt PB (1996) Effects of balsam poplar (Populus balsamifera) tannins and low molecular weight phenolics on microbial activity in taiga floodplain soil: Implications for changes in N cycling during succession. Can J Bot 74:84–90 doi: 10.1139/b96-012 CrossRefGoogle Scholar
  40. Ste Marie C, Paré D (1999) Soil pH and N availability effects on net nitrification in the forest floors of a range of boreal forest stands. Soil Biol Biochem 31:1579–1589 doi: 10.1016/S0038-0717(99)00086-3 CrossRefGoogle Scholar
  41. Thibault J, Fortin J, Smirnoff W (1982) In vitro allelopathic inhibition of nitrification by balsam poplar and balsam fir. Am J Bot 69:676–679 doi: 10.2307/2442957 CrossRefGoogle Scholar
  42. Troelstra SR, Wagenaar R, De Boer W (1990) Nitrate production in Dutch heathland soils. I. General soil characteristics and nitrification in undisturbed soil cores. Plant Soil 127:179–192 doi: 10.1007/BF00014424 CrossRefGoogle Scholar
  43. Walker N, Wickramasinghe KN (1979) Nitrification and autotrophic nitrifying bacteria in acid tea soils. Soil Biol Biochem 11:231–236 doi: 10.1016/0038-0717(79)90067-1 CrossRefGoogle Scholar
  44. White C (1991) The role of monoterpenes in soil nitrogen cycling processes in ponderosa pine. Biogeochemistry 12:43–68 doi: 10.1007/BF00002625 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Simona Castaldi
    • 1
  • Anna Carfora
    • 1
  • Antonio Fiorentino
    • 2
  • Angela Natale
    • 2
  • Anna Messere
    • 1
  • Franco Miglietta
    • 3
  • M. Francesca Cotrufo
    • 1
  1. 1.Department of Environmental SciencesSecond University of NaplesCasertaItaly
  2. 2.Department of Life SciencesSecond University of NaplesCasertaItaly
  3. 3.CNR-IBIMET Institute of BiometeorologyFirenzeItalia

Personalised recommendations