Plant and Soil

, Volume 295, Issue 1–2, pp 79–94 | Cite as

Natural 15N abundance of soil N pools and N2O reflect the nitrogen dynamics of forest soils

  • Katja Pörtl
  • Sophie Zechmeister-Boltenstern
  • Wolfgang Wanek
  • Per Ambus
  • Torsten W. Berger
Regular Article


Natural 15N abundance measurements of ecosystem nitrogen (N) pools and 15N pool dilution assays of gross N transformation rates were applied to investigate the potential of δ15N signatures of soil N pools to reflect the dynamics in the forest soil N cycle. Intact soil cores were collected from pure spruce (Picea abies (L.) Karst.) and mixed spruce-beech (Fagus sylvatica L.) stands on stagnic gleysol in Austria. Soil δ15N values of both forest sites increased with depth to 50 cm, but then decreased below this zone. δ15N values of microbial biomass (mixed stand: 4.7 ± 0.8‰, spruce stand: 5.9 ± 0.9‰) and of dissolved organic N (DON; mixed stand: 5.3 ± 1.7‰, spruce stand: 2.6 ± 3.3‰) were not significantly different; these pools were most enriched in 15N of all soil N pools. Denitrification represented the main N2O-producing process in the mixed forest stand as we detected a significant 15N enrichment of its substrate NO 3 (3.6 ± 4.5‰) compared to NH 4 + (−4.6 ± 2.6‰) and its product N2O (−11.8 ± 3.2‰). In a 15N-labelling experiment in the spruce stand, nitrification contributed more to N2O production than denitrification. Moreover, in natural abundance measurements the NH 4 + pool was slightly 15N-enriched (−0.4 ± 2.0 ‰) compared to NO 3 (−3.0 ± 0.6 ‰) and N2O (−2.1 ± 1.1 ‰) in the spruce stand, indicating nitrification and denitrification operated in parallel to produce N2O. The more positive δ15N values of N2O in the spruce stand than in the mixed stand point to extensive microbial N2O reduction in the spruce stand. Combining natural 15N abundance and 15N tracer experiments provided a more complete picture of soil N dynamics than possible with either measurement done separately.


15N pool dilution Gross mineralisation Gross nitrification Denitrification Picea abies Fagus sylvatica 



We thank Helmut Schume for helpful comments to improve the manuscript. This research was funded by the Austrian Science Fund (FWF – Fonds zur Förderung der Wissenschaftlichen Forschung) within project No. P15496 (principal investigator: T.W. Berger).


  1. Aber JD, Nadelhoffer KJ, Steudler P, Melillo JM (1989) Nitrogen saturation in Northern forest ecosystems. Bioscience 39:378–386CrossRefGoogle Scholar
  2. Ambus P, Zechmeister-Boltenstern S, Butterbach-Bahl K (2006) Sources of nitrous oxide emitted from European forest soils. Biogeosciences 3:135–145Google Scholar
  3. Amundson R, Austin AT, Schuur EAG, Yoo K, Matzek V, Kendall C, Uebersax A, Brenner D, Baisden WT (2003) Global patterns of the isotopic composition of soil and plant nitrogen. Glob Biogeochem Cycle 17(1) Art. no. 1031Google Scholar
  4. Barford CC, Montoya JP, Altabet MA, Mitchell R (1999) Steady-state nitrogen isotope effects of N2 and N2O production in Paracoccus denitrificans. Appl Environ Microbiol 65:989–994PubMedGoogle Scholar
  5. Barrett JE, Burke IC (2000) Potential nitrogen immobilization in grassland soils across a soil organic matter gradient. Soil Biol Biochem 32:1707–1716CrossRefGoogle Scholar
  6. Berger TW, Sun B, Glatzel G (2004) Soil seed banks of pure spruce (Picea abies) and adjacent mixed species stands. Plant Soil 264:53–67CrossRefGoogle Scholar
  7. Binkley D, Giardina C (1998) Why do tree species affect soils? The Warp and Woof of tree–soil interactions. Biogeochemistry 42:89–106CrossRefGoogle Scholar
  8. Bol R, Toyoda S, Yamulki S, Hawkins JMB, Cardenas LM, Yoshida N (2003) Dual isotope and isotopomer ratios of N2O emitted from a temperate grassland soil after fertiliser application. Rapid Commun Mass Spectrom 17:2550–2556PubMedCrossRefGoogle Scholar
  9. Booth MS, Stark JM, Rastetter E (2005) Controls on nitrogen cycling in terrestrial ecosystems: a synthetic analysis of literature data. Ecol Monographs 75:139–157CrossRefGoogle Scholar
  10. Bredemeier M, Blanck K, Xu YJ, Tietema A, Boxman AW, Emmett B, Moldan F, Gundersen P, Schleppi P, Wright RF (1998) Input-output budgets at the NITREX sites. For Ecol Manage 101:57–64CrossRefGoogle Scholar
  11. Bruulsema TW, Duxbury JM (1996) Simultaneous measurement of soil microbial nitrogen, carbon, and carbon isotope ratio. Soil Sci Soc Am J 60:1787–1791CrossRefGoogle Scholar
  12. Casciotti KL, Sigman DM, Ward BB (2003) Linking diversity and stable isotope fractionation in ammonia-oxidizing bacteria. Geomicrobiol J 20:335–353CrossRefGoogle Scholar
  13. Choi W-J, Lee S-M, Yoo S-H (2001) Increase in δ15N of nitrate through kinetic isotope fractionation associated with denitrification in soil. Agric Chem Biotechnol 44:135–139Google Scholar
  14. Choi WJ, Ro HM (2003) Differences in isotopic fractionation of nitrogen in water-saturated and unsaturated soils. Soil Biol Biochem 35:483–486CrossRefGoogle Scholar
  15. Clement JC, Holmes RM, Peterson BJ, Pinay G (2003) Isotopic investigation of denitrification in a riparian ecosystem in western France. J Appl Ecol 40:1035–1048CrossRefGoogle Scholar
  16. Davidson EA, Hart SC, Shanks CA, Firestone MK (1991) Measuring gross nitrogen mineralization, immobilization, and nitrification by 15N isotopic pool dilution in intact soil cores. J Soil Sci 42:335–349CrossRefGoogle Scholar
  17. Dhondt K, Boeckx P, Van Cleemput O, Hofman G (2003) Quantifying nitrate retention processes in a riparian buffer zone using the natural abundance of 15N in NO3. Rap. Commun. Mass Spectrom 17:2597–2604Google Scholar
  18. Dijkstra P, Ishizu A, Doucett R, Hart SC, Schwartz E, Menyailo OV, Hungate BA 2006a 13C and 15N natural abundance of the soil microbial biomass. Soil Biol Biochem 38:3257–3266CrossRefGoogle Scholar
  19. Dijkstra P, Menyailo OV, Doucett RR, Hart SC, Schwartz E, Hungate BA 2006b C and N availability affects the 15N natural abundance of the soil microbial biomass across a cattle manure gradient. Eur J Soil Sci 57:468–475CrossRefGoogle Scholar
  20. Emmett BA, Kjonaas OJ, Gundersen P, Koopmans C, Tietema A, Sleep D (1998) Natural abundance of 15N in forests across a nitrogen deposition gradient. For Ecol Manage 101:9–18CrossRefGoogle Scholar
  21. Garten CT, VanMiegroet H (1994) Relationships between soil-nitrogen dynamics and natural 15N abundance in plant foliage from Great Smoky Mountains National-Park. Can J For Res 24:1636–1645Google Scholar
  22. Gundersen P, Emmett BA, Kjonaas OJ, Koopmans CJ, Tietema A (1998) Impact of nitrogen deposition on nitrogen cycling in forests: a synthesis of NITREX data. For Ecol Manage 101:37–55CrossRefGoogle Scholar
  23. Hart SC, Nason GE, Myrold DD, Perry DA (1994) Dynamics of gross nitrogen transformations in an old-growth forest: the carbon connection. Ecology 75:880–891CrossRefGoogle Scholar
  24. Hertenberger G, Wanek W (2004) Evaluation of methods to measure differential 15N labelling of soil and root N pools for studies of root exudation. Rapid Commun Mass Spectrom 18:2415–2425PubMedCrossRefGoogle Scholar
  25. Hobbie EA, Colpaert JV (2003) Nitrogen availability and colonization by mycorrhizal fungi correlate with nitrogen isotope patterns in plants. New Phytol 157:115–126CrossRefGoogle Scholar
  26. Hobbie EA, Macko SA, Shugart HH (1999) Interpretation of nitrogen isotope signatures using the NIFTE model. Oecologia 120:405–415CrossRefGoogle Scholar
  27. Högberg P (1997) Tansley review No 95 – 15N natural abundance in soil-plant systems. New Phytol 137:179–203CrossRefGoogle Scholar
  28. Högberg P, Högbom L, Schinkel H, Högberg M, Johannisson C, Wallmark H (1996) 15N abundance of surface soils, roots and mycorrhizas in profiles of European forest soils. Oecologia 108:207–214Google Scholar
  29. Högberg P, Johannisson C (1993) 15N abundance of forests is correlated with losses of nitrogen. Plant Soil 157:147–150Google Scholar
  30. Kirkham D, Bartholomew WV (1954) Equations for following nutrient transformations in soil, utilizing tracer data. Soil Sci Soc Am Proc 18:33–34CrossRefGoogle Scholar
  31. Koba K, Hirobe M, Koyama L, Kohzu A, Tokuchi N, Nadelhoffer KJ, Wada E, Takeda H (2003) Natural 15N abundance of plants and soil N in a temperate coniferous forest. Ecosystems 6:457–469CrossRefGoogle Scholar
  32. Koba K, Tokuchi N, Yoshioka T, Hobbie EA, Iwatsubo G (1998) Natural abundance of 15N in a forest soil. Soil Sci Soc Am J 62:778–781CrossRefGoogle Scholar
  33. Korontzi S, Macko SA, Anderson IC, Poth MA (2000) A stable isotopic study to determine carbon and nitrogen cycling in a disturbed southern Californian forest ecosystem. Glob Biogeochem Cycle 14:177–188CrossRefGoogle Scholar
  34. Kramer MG, Sollins P, Sletten RS, Swart PK (2003) N isotope fractionation and measures of organic matter alteration during decomposition. Ecology 84:2021–2025CrossRefGoogle Scholar
  35. Mandernack KW, Rahn T, Kinney C, Wahlen M (2000) The biogeochemical controls of the δ15N and δ18O of N2O produced in landfill cover soils. J Geophys Res-Atmos 105:17709–17720CrossRefGoogle Scholar
  36. Mariotti A, Germon JC, Hubert P, Kaiser P, Letolle R, Tardieux A, Tardieux P (1981) Experimental determination of nitrogen kinetic isotope fractionation: some principles; illustration for the denitrification and nitrification processes. Plant Soil 62:413–430CrossRefGoogle Scholar
  37. Mariotti A, Germon JC, Leclerc A (1982) Nitrogen isotope fractionation associated with the NO2-N2O step of denitrification in soils. Can J Soil Sci 62:227–241CrossRefGoogle Scholar
  38. Menyailo OV, Hungate BA (2006) Stable isotope discrimination during soil denitrification: production and consumption of nitrous oxide. Glob Biogeochem Cycle 20. Art. no. GB3025Google Scholar
  39. Menyailo OV, Hungate BA, Lehmann J, Gebauer G, Zech W (2003) Tree species of the central Amazon and soil moisture alter stable isotope composition of nitrogen and oxygen in nitrous oxide evolved from soil. Isotopes Environ Health Stud 39:41–52PubMedCrossRefGoogle Scholar
  40. Murphy DV, Recous S, Stockdale EA, Fillery IRP, Jensen LS, Hatch DJ, Goulding KWT (2003) Gross nitrogen fluxes in soil: theory, measurement and application of 15N pool dilution techniques. Adv Agron 79:69–118CrossRefGoogle Scholar
  41. Neubauer C (2002) Einfluß der Baumartenmischung auf Bodenzustand und Nährstoffflüsse (Impact of tree species composition on soil parameters and nutrient fluxes). Doctoral thesis, Boku University, Vienna, 110 ppGoogle Scholar
  42. Perez T, Trumbore SE, Tyler SC, Davidson EA, Keller M, de Camargo PB (2000) Isotopic variability of N2O emissions from tropical forest soils. Glob Biogeochem Cycle 14:525–535CrossRefGoogle Scholar
  43. Perez T, Trumbore SE, Tyler SC, Matson PA, Ortiz-Monasterio I, Rahn T, Griffith DWT (2001) Identifying the agricultural imprint on the global N2O budget using stable isotopes. J Geophys Res-Atmos 106:9869–9878CrossRefGoogle Scholar
  44. Schimel JP, Bennett J (2004) Nitrogen mineralization: challenges of a changing paradigm. Ecology 85:591–602CrossRefGoogle Scholar
  45. Schinner F, Öhlinger R, Kandeler E, Margesin R (1996) Methods in soil biology. Springer Verlag, Berlin, 426 ppGoogle Scholar
  46. Schume H, Jost G, Katzensteiner K (2003) Spatio-temporal analysis of the soil water content in a mixed Norway spruce (Picea abies (L.) Karst.) – European beech (Fagus sylvatica L.) stand. Geoderma 112:273–287CrossRefGoogle Scholar
  47. Silfer JA, Engel MH, Macko SA (1992) Kinetic fractionation of stable carbon and nitrogen isotopes during peptide bond hydrolysis: experimental evidence and geochemical implications. Chem Geol 101:211–221Google Scholar
  48. Sutka RL, Ostrom NE, Ostrom PH, Gandhi H, Breznak JA (2003) Nitrogen isotopomer site preference of N2O produced by Nitrosomonas europaea and Methylococcus capsulatus Bath. Rapid Commun Mass Spectrom 17:738–745PubMedCrossRefGoogle Scholar
  49. Sutka RL, Ostrom NE, Ostrom PH, Breznak JA, Gandhi H, Pitt AJ, Li F (2006) Distinguishing nitrous oxide production from nitrification and denitrification on the basis of isotopomer abundances. Appl Environ Microbiol 72:638–644PubMedCrossRefGoogle Scholar
  50. Tamm CO (1991) Nitrogen in the terrestrial environment. Questions of productivity, vegetational changes and ecosystem stability. Springer Verlag, Berlin, pp 116Google Scholar
  51. Tiessen H, Karamanos RE, Stewart JWB, Selles F (1984) Natural 15N abundance as an indicator of soil organic matter transformations in native and cultivated soils. Soil Sci Soc Am J 48:312–315CrossRefGoogle Scholar
  52. Tilsner J, Wrage N, Lauf J, Gebauer G (2003a) Emission of gaseous nitrogen oxides from an extensively managed grassland in NE Bavaria, Germany. I. Annual budgets of N2O and NOx emissions. Biogeochemistry 63:229–247CrossRefGoogle Scholar
  53. Tilsner J, Wrage N, Lauf J, Gebauer G (2003b) Emission of gaseous nitrogen oxides from an extensively managed grassland in NE Bavaria, Germany - II. Stable isotope natural abundance of N2O. Biogeochemistry 63:249–267CrossRefGoogle Scholar
  54. Toyoda S, Mutobe H, Yamagishi H, Yoshida N, Tanji Y (2005) Fractionation of N2O isotopomers during production by denitrifier. Soil Biol Biochem 37:1535–1545CrossRefGoogle Scholar
  55. Van Groenigen JW, Zwart KB, Harris D, van Kessel C (2005) Vertical gradients of δ15N and δ18O in soil atmospheric N2O-temporal dynamics in a sandy soil. Rapid Commun Mass Spectrom 19:1289–1295PubMedCrossRefGoogle Scholar
  56. Venterea RT, Groffman PM, Verchot LV, Magill AH, Aber JD (2004) Gross nitrogen process rates in temperate forest soils exhibiting symptoms of nitrogen saturation. For Ecol Manage 196:129–142CrossRefGoogle Scholar
  57. Vitousek PM, Shearer G, Kohl DH (1989) Foliar 15N natural abundance in Hawaiian rainforest: patterns and possible mechanisms. Oecologia 78:383–388CrossRefGoogle Scholar
  58. Webster EA, Hopkins DW (1996) Nitrogen and oxygen isotope ratios of nitrous oxide emitted from soil and produced by nitrifying and denitrifying bacteria. Biol Fertil Soils 22:326–330Google Scholar
  59. Well R, Kurganova I, de Gerenyu VL, Flessa H (2006) Isotopomer signatures of soil-emitted N2O under different moisture conditions - A microcosm study with arable loess soil. Soil Biol Biochem 38:2923–2933CrossRefGoogle Scholar
  60. Werner RA, Schmidt HL (2002) The in vivo nitrogen isotope discrimination among organic plant compounds. Phytochemistry 61:465–484PubMedCrossRefGoogle Scholar
  61. Wolf I, Brumme R (2003) Dinitrogen and nitrous oxide formation in beech forest floor and mineral soils. Soil Sci Soc Am J 67:1862–1868CrossRefGoogle Scholar
  62. Wrage N, Lauf J, del Prado A, Pinto M, Pietrzak S, Yamulki S, Oenema O, Gebauer G (2004) Distinguishing sources of N2O in European grasslands by stable isotope analysis. Rapid Commun Mass Spectrom 18:1201–1207PubMedCrossRefGoogle Scholar
  63. Yoshida N (1988) 15N-depleted N2O as a product of nitrification. Nature 335:528–529CrossRefGoogle Scholar
  64. Yoshida N, Morimoto H, Hirano M, Koike I, Matsuo S, Wada E, Saino T, Hattori A (1989) Nitrification rates and 15N abundances of N2O and NO3 in the Western North Pacific. Nature 342:895–897CrossRefGoogle Scholar
  65. Zechmeister-Boltenstern S, Hahn M, Meger S, Jandl R (2002) Nitrous oxide emissions and nitrate leaching in relation to microbial biomass dynamics in a beech forest soil. Soil Biol Biochem 34:823–832CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Katja Pörtl
    • 1
  • Sophie Zechmeister-Boltenstern
    • 2
  • Wolfgang Wanek
    • 3
  • Per Ambus
    • 4
  • Torsten W. Berger
    • 1
  1. 1.Department of Forest and Soil Science, Institute of Forest EcologyUniversity of Natural Resources and Applied Life Sciences (BOKU)ViennaAustria
  2. 2.Department of Forest EcologyFederal Research and Training Centre for Forests, Natural Hazards and LandscapeViennaAustria
  3. 3.Department of Chemical Ecology and Ecosystem Research, Vienna Ecology CentreUniversity of ViennaViennaAustria
  4. 4.Biosystems DepartmentRisø National LaboratoryRoskildeDenmark

Personalised recommendations