Skip to main content
Log in

Relationships between Ni-hyperaccumulation and mycorrhizal status of different endemic plant species from New Caledonian ultramafic soils

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

For a long time, Ni-hyperaccumulating plants have been considered to be non-mycorrhizal species. However, two recent publications have reported arbuscular mycorrhizal fungi (AMF) colonisation in Ni-hyperaccumulators. In this work, 9 endemic Ni-accumulators of unknown mycorrhizal status, from New Caledonia, were studied. All were mycorrhizal, but some were poorly colonised by the symbiots. Only AMF were observed. We analysed the relationships between Ni-hyperaccumulation ability and AMF colonisation of the plants. The roots of the three strongest hyperaccumulators, namely Sebertia acuminata, Psychotria douarrei and Phyllanthus favieri, were characterised by a lower mycorrhizal colonisation than the others. Mycorrhizal density varied with the level of Ni concentration in soil and plant. Root-colonisation by AMF was negatively correlated with leaf Ni content and with extractable-Ni concentration in soil. The roots of Ni-hyperaccumulators and the soils collected under these plants clearly inhibited germination of AMF spores. Hence, it appears that mycorrhizal colonisation is inhibited above a certain threshold of Ni concentration in soil and plant and becomes either absent or very low. However AMF isolated from the roots of strong Ni-hyperaccumulators have developed a very high level of Ni-tolerance and are then able to colonize at least parts of their roots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Amir H, Pineau R (2003) Relationships between extractable Ni, Co and other metals and microbiological characteristics of different ultramafic soils from New Caledonia. Aust J Soil Res 41:1–14

    Article  Google Scholar 

  • Amir H, Pineau R, Violette Z (1997) Premiers résultats sur les endomycorhizes des plantes de maquis miniers. In: Jaffré T, Reeves RD, Becquer T (eds) The ecology of ultramafic and metalliferous areas. ORSTOM Edition, Noumea, pp 79–85

    Google Scholar 

  • Baker AJM (1981) Accumulators and excluders strategies in the response of plants to heavy metals. J Plant Nutr. 3:643–654

    CAS  Google Scholar 

  • Bathia N, Walsh KB, Orlic I, Siegele R, Ashwath N, Baker AJM (2004) Studies on spatial distribution of nickel in leaves and stems of the metal hyperaccumulator Stackhousia tryonii using nuclear microprobe (micro-PIXE) and EDXS techniques. Func Plant Biol 31:1061–1074

    Article  CAS  Google Scholar 

  • Boyd RS, Jaffré T (2001) Phytoenrichment of soil Ni content by Sebertia acuminata in New Caledonia and the concept of elemental allelopathy. South Afr J Sci 97:535–538

    CAS  Google Scholar 

  • Boyd RS, Jaffré T, Odom JW (1999) Variation of nickel content in the nickel-hyperaccumulating shrub Psychotria douarrei (Rubiaceae) from New Caledonia. Biotropica 31:403–410

    Article  Google Scholar 

  • Boyd RS, Shaw JJ, Martens SN (1994) Nickel hyperaccumulation defends Streptanthus polygaloides (Brassicaceae) against pathogens. Am J Bot 81:294–300

    Article  CAS  Google Scholar 

  • Brooks RR (1987) Serpentine and its vegetation. A multidisciplinary approach. Dioscorides Press, Portland, Oregon

    Google Scholar 

  • Coles KE, David JC, Fisher PJ, Lappin-Scott HM, Macnair MR (2001) Solubilisation of zinc compounds by fungi associated with the hyperaccumulator Thlaspi caerulescens. Bot J Scot 51:237–247

    Article  Google Scholar 

  • Gildon A, Tinker PB (1981) A heavy metal-tolerant strain of a mycorrhizal fungus. Trans Brit Mycol Soc 77:648–649

    Article  Google Scholar 

  • Heggo A, Angle JS (1990) Effects of vesicular-arbuscular mycorrhizal fungi on heavy metal uptake by soybeans. Soil Biol Biochem 22:865–869

    Article  CAS  Google Scholar 

  • Hilderbrandt M, Kaldorf M, Bothe H (1999) The zinc violet and its colonisation by arbuscular mycorrhizal fungi. J Plant Physiol 154:709–717

    Google Scholar 

  • Jaffré T (1980) Etude écologique du peuplement végétal des sols dérivés de roches ultrabasiques en Nouvelle-Calédonie. ORSTOM Press, Paris

    Google Scholar 

  • Jaffré T, Brooks RR, Reeves RD (1976) Sebertia acuminata: a nickel accumulating plant from New Caledonia. Science 193:573–580

    Article  Google Scholar 

  • Jaffré T, Veillon JM (1991) Etude floristique et structurale de deux forêts denses humides sur roches ultrabasiques en Nouvelle-Calédonie. Bull Mus Natn Hist Nat 12:243–273

    Google Scholar 

  • Jhee EM, Boyd RS, Eubanks MD (2005) Nickel hyperaccumulation as an elemental defense of Streptanthus polygaloides (Brassicaceae): influence of herbivore feeding mode. New Phytol 168:331–344

    Article  PubMed  CAS  Google Scholar 

  • Joner EJ, Leyval C (2001) Time-course of heavy metal uptake in maize and clover as affected by root density and different mycorrhizal inoculation regimes. Biol Fertil Soils 33:351–357

    Article  CAS  Google Scholar 

  • Kersten WJ, Brooks RR, Reeves RD, Jaffré T (1980) Nature of nickel complexes in Psychotria douarrei and other nickel-accumulating plants. Phyochemistry 19:1963–1965

    Article  CAS  Google Scholar 

  • Koske RE, Gemma JN (1989) A modified procedure for staining roots to detect VA Mycorrhizas. Mycol Res 92:486–505

    Article  Google Scholar 

  • Krämer U, Cotter Howells JD, Charnock JM, Baker AJM, Smith JAC (1996) Free histidine as a metal chelator in plants that accumulate nickel. Nature 379:635–638

    Article  Google Scholar 

  • Lee J, Reeves RD, Brooks RR, Jaffré T (1977) Isolation and identification of a citrato-complex of nickel from nickel-accumulating plants. Phytochemistry 16:1503–1505

    Article  CAS  Google Scholar 

  • Leyval C, Singh BA, Joner EJ (1995) Occurrence and infectivity of arbuscular mycorrhizal fungi in some Norwegian soils influenced by heavy metals and soil properties. Wat Air Soil Pol 84:203–216

    Article  CAS  Google Scholar 

  • Leyval C, Turnau K, Haselwandter K (1997) Effect of heavy metal pollution on mycorrhizal colonisation and function, physiological, ecological and applied aspects. Mycorrhiza 7:139–153

    Article  CAS  Google Scholar 

  • Lindsay WL, Norvell WA (1978) Development of a DTPA soil test for zinc, iron, manganese and copper. Soil Sci Soc Am J 42:421–428

    Article  CAS  Google Scholar 

  • Ouerdane L, Mari S, Czernic P, Lebrun M, Lobinski R (2006) Speciation of non-covalent nickel species in plant tissue extracts by electrospray Q-TOFMS/MS after their isolation by 2D size exclusion-hydrophilic interaction LC (SEC-HILIC) monitored by ICP-MS. J Anal Atom Spectr 21:676–683

    Article  CAS  Google Scholar 

  • Pawlowska TE, Chaney RL, Chin M, Charvat I (2000) Effects of metal phytoextraction practices on the indigenous community of arbuscular mycorrizal fungi at a metal contaminated landfill. Appl Environ Microbiol 66:2526–2530

    Article  PubMed  CAS  Google Scholar 

  • Perrier N, Amir H, Colin F (2006) Occurrence of mycorrizal symbioses in the metal-rich lateritic soils of the Koniambo Massif, New Caledonia. Mycorrhiza, 57:572–582

    Google Scholar 

  • Perrier N, Colin F, Jaffré T, Ambrosi JP, Rose J, Bottero JY (2004) Nickel speciation in Sebertia acuminata, a plant growing on a lateritic soil of New Caledonia. C R Geosciences 336:567–577

    Article  CAS  Google Scholar 

  • Reeves RD (1992) The hyperaccumulation of nickel by serpentine plants. In: Baker AJM, Proctor J, Reeves RD (eds) The vegetation of ultramafic (serpentine) soils. Intercept, Andover, pp 253–277

    Google Scholar 

  • Sagner S, Kneer R, Wanner G, Cosson J-P, Deus-Neumann B, Zenk MH (1998) Hyperaccumulation, complexation and distribution of nickel in Sebertia acuminata. Phytochemistry 47:339–347

    Article  PubMed  CAS  Google Scholar 

  • Schlegel HG, Cosson JP, Baker AJM (1991) Nickel-hyperaccumulating plants provide a niche for nickel-resistant bacteria. Bot Acta 104:18–25

    CAS  Google Scholar 

  • Smith SE, Read DJ (1997) Mycorrhizal symbiosis. Second edn. Academic Press, San Diego, London

  • Tomsett EB, Thurman DA (1988) Molecular biology of metal tolerances in plants. Plant Cell Environ 11:383–394

    Article  CAS  Google Scholar 

  • Trouvelot A, Kough JL, Gianinazzi-Pearson V (1986) Mesure du taux de mycorhization VA d’un système radiculaire. Recherche de méthodes d’estimation ayant une signification fonctionnelle. In: Gianinazzi-Pearson V, Gianinazzi S (eds) Physiological and genetical aspects of mycorrhizae. INRA Edition, Paris, pp 217–221

    Google Scholar 

  • Turnau K, Mesjasz-Przybylowicz J (2003) Arbuscular mycorrhiza of Berkheya coddii and other Ni-hyperaccumulating members of Asteraceae from ultramafic soils in South Africa. Mycorrhiza 13:185–190

    Article  PubMed  Google Scholar 

  • Verkleij JAC (1990) In: Shaw AJ Heavy metal tolerance in plants: evolutionary aspects. CRC Press, Boca Raton, FL

  • Vivas A, Barea JM, Azcon R (2005) Interactive effect of Brevibacillus brevis and Glomus mossae, both isolated from Cd contaminated soil, on plant growth, physiological mycorrhizal fungal characteristics and soil enzymatic activities in Cd polluted soil. Environ Pollut 134:257–266

    Article  PubMed  CAS  Google Scholar 

  • Vogel-Mikus K, Drobne D, Regvar M (2005) Zn, Cd and Pb accumulation and arbuscular mycorrhizal colonisation of pennycress Thlaspi praecox Wulf. (Brassicaceae) from the vicinity of a lead mine and smelter in Slovenia. Environ Pollut 133:233–242

    Article  PubMed  CAS  Google Scholar 

  • Wang B, Qiu YL (2006) Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza 16:299–363

    Article  PubMed  CAS  Google Scholar 

  • Weissenhorn I, Glashoff A, Leyval C, Berthelin J (1994) Differential tolerance to Cd and Zn of arbuscular mycorrhizal (AM) fungal spores from heavy-metal polluted soils. Plant Soil 167:189–196

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Amir.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Amir, H., Perrier, N., Rigault, F. et al. Relationships between Ni-hyperaccumulation and mycorrhizal status of different endemic plant species from New Caledonian ultramafic soils . Plant Soil 293, 23–35 (2007). https://doi.org/10.1007/s11104-007-9238-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-007-9238-0

Keywords

Navigation