Advertisement

Plant and Soil

, Volume 293, Issue 1–2, pp 197–207 | Cite as

Micro-PIXE studies of elemental distribution in sap-feeding insects associated with Ni hyperaccumulator, Berkheya coddii

  • P. Migula
  • W. J. Przybyłowicz
  • J. Mesjasz-Przybyłowicz
  • M. Augustyniak
  • M. Nakonieczny
  • E. Głowacka
  • M. Tarnawska
Regular Article

Abstract

The aim of this study was to determine elemental composition of sap-feeding insects inhabiting various parts of the Ni hyperaccumulating plant Berkheya coddii Roessl., the endemic species of ultramafic outcrops in Mpumalanga, South Africa. Three species were examined: the aphid Protaphis pseudocardui (Aphididae), abundant on young leaves; the mealybug Orthesia sp. (Ortheziidae) colonizing underground parts of this plant, and the bug Norialsus berkheyae (Cixiidae) living on young shoots. Maps of Ni, K, Ca, Zn, and Fe for selected body areas of these species were generated using Dynamic Analysis method on the basis of particle-induced X-ray emission (micro-PIXE) and proton backscattering (BS) measurements. Atomic absorption spectrometry was used to determine Ni, Zn, Cu, Fe contents in the B. coddii organs, in some sap-feeding insect species including these mentioned above, and in the assassin bug hunting on Chrysolina pardalina, a monophagous beetle of B. coddii. Bioaccumulation factor for Ni in the examined species was below 0.05, and much higher for other metals (Zn ≥ 2; Fe ≤ 5). Ni distribution within body was species-dependent. It was the highest in the antennae of P. pseudocardui, in the head of Orthesia sp. and in the metathorax of N. berkheyae. Distribution patterns of other metals were different among examined species. Ca was recorded mainly in peripheral parts of the body in all species. Zn showed similar distribution to Ni. Fe distribution was similar to Ni only in the mealybugs. Uneven concentrations of metals within selected body regions indicated their relations with specific organs. Analysis of Ni transfer to higher trophic levels was done on the basis of two food nets: B. coddii—C. pardalina—Rhinocoris neavii and B. coddii—P. pseudocarduiPolyrhachis ant and led to the conclusion that the role of sap-feeding insects in Ni transfer was marginal.

Keywords

Elemental mapping Ni-hyperaccumulator Sap-feeding insects Trace metals X-ray microanalysis Nuclear microprobe 

Notes

Acknowledgments

This study forms part of the joint South African–Polish cooperation project “Relations between South-African indigenous plant Berkheya coddii and its natural consumers for metal bioremediation purposes” supported by South African National Research Foundation and Polish State Ministry of Science and Higher Education. Mpumalanga Parks Boards and SAPPI Forestry are acknowledged for permission to access the sites and for all assistance.

References

  1. Augustyniak M, Mesjasz-Przybyłowicz J, Nakonieczny M, Dybowska M, Przybyłowicz W, Migula P (2002) Food relations between Chrysolina pardalina and Berkheya coddii–a nickel hyperaccumulator from South African ultramafic outcrops. FEB-Fresenius Environ Bull 11:85–90Google Scholar
  2. Augustyniak M, Migula P (2000) Body burden with metals and detoxifying abilities of the grasshopper—Chorthippus brunneus (Thunberg) from industrially polluted areas. In: Merkert B, Friese K (eds) Heavy metals in environment. Elsevier, Amsterdam, pp 423–454 Google Scholar
  3. Boyd RS, Martens SN (1999) Aphids are unaffected by the elemental defence of the nickel hyperaccumulator Streptanthus polygaloides (Brassicaceae). Chemoecology 9:1–7CrossRefGoogle Scholar
  4. Boyd RS (2004) Ecology of metal hyperaccumulation. New Phytol 162:563–567CrossRefGoogle Scholar
  5. Boyd RS, Davis MA, Wall MA, Balkwill K (2006a) Metal concentrations of insects associated with the South African Ni hyperaccumulator Berkheya coddii (Asteraceae). Insect Sci 13:85–102CrossRefGoogle Scholar
  6. Boyd RS, Davis MA, Wall MA, Tanguy J (2006b) Nickel levels in arthropods associated with Ni hyperaccumulator plants from an ultramafic site in New Caledonia. Insect Sci 13:271–277CrossRefGoogle Scholar
  7. Crawford LA, Hodkinson ID, Lepp NW (1995) The effects of elevated host-plant cadmium and copper on the performance of the aphid Aphis fabae (Homoptera: Aphididae). J Appl Ecol 32:528–535CrossRefGoogle Scholar
  8. Dadd RH (1985) Nutrition: organisms. In: Kerkut GA, Gilbert LI (eds) Comprehensive insect physiology, biochemistry and pharmacology, vol 4. Pergamon Press, Oxford pp 313–390Google Scholar
  9. Ernst WHO, Schat H, Verkleij JAC (1990) Evolutionary biology of metal resistance in Silene vulgaris. Evol Trends Plants 4:45–51Google Scholar
  10. Hopkin SP (1989) Ecophysiology of metals in terrestrial invertebrates. Elsevier, New YorkGoogle Scholar
  11. Mesjasz-Przybyłowicz J, Przybyłowicz W, Ostachowicz B, Augustyniak M, Nakonieczny M, Migula P (2002) Trace elements in the chrysomelid beetle (Chrysolina pardalina) and its Ni-hyperaccumulating host-plant (Berkheya coddii). FEB-Fresenius Environ Bull 11:78–84Google Scholar
  12. Mesjasz-Przybyłowicz J, Przybyłowicz WJ (2001) Phytophagous insects associated with the nickel hyperaccumulating plant—Berkheya coddii (Asteraceae) in Mpumalanga, South Africa. S Afr J Sci 97:596–598Google Scholar
  13. Migula P (1996) Trace metals in animals: an overview on essentiality transport, accumulation and adaptive mechanisms. Biol Bull Poznań 33:9–13Google Scholar
  14. Migula P, Przybyłowicz W, Mesjasz-Przybyłowicz J, Nakonieczny M, Augustyniak M Głowacka E, Tarnawska M (2005) Energy budgets and nickel mapping in two coleopterans (Holcolaccus sp.n. and Chrysolina pardalina) feeders of Ni hyperaccumulator Berkheya coddii. SETAC. Europe 15th Annual Meeting Abstr. Book MO6–1/3, 26Google Scholar
  15. Millar IM (1990) The aphids (Homoptera: Aphidoidea) of South Africa. Ent Memoir. Republic of South-Africa, Dept Agricultural Dev. 78, 105 ppGoogle Scholar
  16. Millar IM (2002) Mealybug genera (Hemiptera: Pseudococcidae) of South Africa: identification and review. Afr entomol 10:185–233Google Scholar
  17. Morrey DR, Balkwill K, Balkwill MJ (1989) Studies on serpentine flora—preliminary analyses of soils and vegetation associated with serpentinite rock formations in the Southeastern Transvaal. S Afr J Bot 55:171–177Google Scholar
  18. Nichol H, Law JH, Winzerling JJ (2002) Iron metabolism in insects. Annu Rev Entomol 47:535–559PubMedCrossRefGoogle Scholar
  19. Phipps T, Tank SL, Wirtz J, Brewer L, Coyner A, Ortego LS, Fairbrother A (2002) Essentiality of nickel and homeostatic mechanisms for its regulation in terrestrial organisms. Environ Rev Dossiers Environ 10:209–261CrossRefGoogle Scholar
  20. Przybyłowicz WJ, Mesjasz-Przybyłowicz J, Pineda CA, Churms CL, Springhorn KA, Prozesky VM (1999) Biological applications of the NAC nuclear microprobe. X-ray Spectrom 28:237–243CrossRefGoogle Scholar
  21. Przybyłowicz W, Mesjasz Przybyłowicz J, Migula P, Głowacka E, Nakonieczny M, Augustyniak M (2003) Functional analysis of metals distribution in organs of the beetle Chrysolina pardalina exposed to excess of nickel by Micro-PIXE. Nucl Instr and Meth B 210:343–348CrossRefGoogle Scholar
  22. Przybyłowicz WJ, Mesjasz-Przybyłowicz J, Migula P, Turnau K, Nakonieczny M, Augustyniak M, Głowacka E (2004) Elemental microanalysis in ecophysiology using ion microbeam. Nucl Instr and Meth B 219–220:57–66CrossRefGoogle Scholar
  23. Reeves RD, Baker AJM (2000) Metal-accumulating plants. In: Raskin I, Ensley BD (eds) Phytoremediation of toxic metals: using plants to clean up the environment. Wiley, New York, pp 193–229Google Scholar
  24. Ryan CG, van Achterbergh E, Yeats CJ, Drieberg SL, Mark G, McInnes BM, Win TT, Cripps G, Suter GF (2002) Quantitative, high sensitivity, high resolution, nuclear microprobe imaging of fluids, melts and minerals. Nucl Instr and Meth B 188:18–27CrossRefGoogle Scholar
  25. Smith S, Balkwill K, Willamson S (2001) Compositae on serpentine in the Barberton Greenstone Belt, South Africa. S Afr J Sci 97(2):518–520Google Scholar
  26. Szwedo J (2005) Norialsus berkheyae n.sp. from South Africa (Hemiptera: Fulgoromorpha: Cixiidae)—planthopper from Berkheya coddii (Asteraceae), nickel hyperaccumulating plant. Genus 16:313–323Google Scholar
  27. Vijver MAG, van Gestel CAM, Lanno RP, van Straalen NM, Peijneburg WGM (2004) Internal metal sequestration and its ecotoxicological relevance. Env Sci Technol 38:4705–4712CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • P. Migula
    • 1
  • W. J. Przybyłowicz
    • 2
    • 3
  • J. Mesjasz-Przybyłowicz
    • 2
  • M. Augustyniak
    • 1
  • M. Nakonieczny
    • 1
  • E. Głowacka
    • 1
  • M. Tarnawska
    • 1
  1. 1.Departments of Animal Physiology and Ecotoxicology and ZoologyUniversity of SilesiaKatowicePoland
  2. 2.Materials Research GroupiThemba LABSSomerset WestSouth Africa
  3. 3.on leave Faculty of Physics and Applied Computer ScienceAGH University of Science and TechnologyCracowPoland

Personalised recommendations