Skip to main content
Log in

Soil microbial loop and nutrient uptake by plants: a test using a coupled C:N model of plant–microbial interactions

  • ORIGINAL PAPER
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

We have developed a spatially explicit model of plant root and soil bacteria interactions in the rhizosphere in order to formalise and study the microbial loop hypothesis that postulates that plants can stimulate the release of mineral N from the soil organic matter by providing low molecular weight C molecules to C-limited microorganisms able to liberate into the soil enzymes that degrade the organic matter. The model is based on a mechanistic description of diffusion of solutes in the soil, nutrient uptake by plants, bacterial activity and bacterial predation. Modelled soil bacterial populations grow, mediate transformations among several forms of nitrogen (mineral and organic) and compete for nitrogen with plants. Our objectives were to see if we could simulate the stimulation of turnover of the microbial loop by exudates and to study the effects of diffusion of C and N in the rhizosphere on these different processes. The model qualitatively mimics most of the characteristics of the microbial loop hypothesis. In particular, (1) plant exudates increase the growth of bacteria in the soil and (2) increase the degradation of soil organic matter and N mineralisation. (3) The increased bacterial biomass induces an increase in predator biomass and, as a result, (4) plant mineral N uptake is increased threefold compared with scenarios without exudation. However, the temporal dynamics simulated by the model are much slower than observed dynamics (the increase in uptake appears after a few months). Taking into consideration the diffusion of C and N containing molecules in soil has large effects on the spatial structure of the bacterial and predator biomass. However, the average biomass of bacteria and predators, N mineralisation and plant N uptake were not affected by these properties. The model provides a quantitative and mechanistic explanation of how plants could benefit from liberating low molecular organic matter and the subsequent stimulation of the microbial loop and increases N mineralisation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Adamowicz S, Le Bot J (1999) Trends in modelling nitrate uptake. Acta Hort 507:231–239

    Google Scholar 

  • Ajwa HA, Rice CW, Sotomayor D (1998) Carbon and nitrogen mineralization in tallgrass prairie and agricultural soil profiles. Soil Sci Soc Am J 62:942–951

    Article  CAS  Google Scholar 

  • Barak P, Molina JAE, Hadas A, Clapp CE (1990) Mineralization of amino acids and evidence of direct assimilation of organic nitrogen. Soil Sci Soc Am J 54:769–774

    Article  CAS  Google Scholar 

  • Barber SA, Silberbush M (1984) Plant root morphology and nutrient uptake. In: Barber S, Bouldin D (eds) Roots, nutrients and water influx, and plant growth. American Society of Agronomy, Madison, WI, USA, pp 65–87. Special publication 49

    Google Scholar 

  • Betlach MR, Tiedje JM, Firestone RB (1981) Assimilatory nitrate uptake in Pseudomonas fluorescens studied using nitrogen-13. Arch Microbiol 129:135–140

    Article  PubMed  CAS  Google Scholar 

  • Bonkowski M (2004) Protozoa and plant growth: the microbial loop in soil revisited. New Phytol 162(3):617–631

    Article  Google Scholar 

  • Buesing N, Gessner MO (2003) Incorporation of radiolabelled leucine into protein to estimate bacterial production in plant litter, sediment, epiphytic biofilms, and water samples. Microbiol Ecol 45:291–301

    Article  CAS  Google Scholar 

  • Chen CR, Condron LM, Davis MR, Sherlock RR (2002) Phosphorus dynamics in the rhizosphere of perennial ryegrass (Lolium perenne l.) and radiata pine (Pinus radiata d. don.). Soil Biol Biochem 34(4):487–499

    Article  CAS  Google Scholar 

  • Clarholm M (1981) Protozoan grazing of bacteria in soils—impact and importance. Microbiol Ecol 7:343–350

    Article  Google Scholar 

  • Clarholm M (1985a) Interactions of bacteria, protozoa and plants leading to mineralization of soil nitrogen. Soil Biol Biochem 17(2):181–187

    Article  CAS  Google Scholar 

  • Clarholm M (1985b) Possible roles for roots, bacteria, protozoa and fungi in supplying nitrogen to plants. Ecol Interact Soil 4:355–365

    Google Scholar 

  • Clarholm M (1989) Effects of plant–bacterial–amoebal interactions on plant uptake of nitrogen under field conditions. Biol Fert Soils 8:373–378

    Article  Google Scholar 

  • Coleman DC, Ingham RE, McClellan JF, Trofymow JA (1984) Soil nutrient transformations in the rhizosphere via animal–microbial interactions. In: Anderson JH, Raynew ADM, Walton DHW (eds) Invertebrate–microbial interactions. Cambridge University Press, Cambridge, pp 35–58

    Google Scholar 

  • Darrah PR (1996). Rhizodeposition under ambient and elevated CO2 levels. Plant Soil 187:265–275

    Article  CAS  Google Scholar 

  • Daufresne T, Loreau M (2001) Ecological stoichiometry, indirect interactions between primary producers and decomposers, and the persistence of ecosystems. Ecology 82(11):3069–3082

    Article  Google Scholar 

  • Dijkstra AF, Govaert JM, Scholten GHN, van Elsas JD (1987) A soil chamber for studying the bacterial distribution in the vicinity of roots. Soil Biol Biochem 19(3):351–352

    Article  Google Scholar 

  • Farrar JF, Jones DL (2000) The control of carbon acquisition by roots. New Phytol 147(1):43–53

    Article  CAS  Google Scholar 

  • Fontaine S, Mariotti A, Abbadie L (2003) The priming effect of organic matter: a question of microbial competition? Soil Biol Biochem 35:837–843

    Article  CAS  Google Scholar 

  • Gahoonia TS, Asmar F, Henriette G, Gissel-Nielsen G, Nielsen NE (2000) Root-released organic acids and phosphorus uptake of two barley cultivars in laboratory and field experiments. Eur J Agron 12(3–4):281–289

    Article  CAS  Google Scholar 

  • Gee CS, Pfeffer JT, Suidan MT (1990) Nitrosomonas and Nitrobacter interactions in biological nitrification. J␣Environ Eng 116(1):4–17

    CAS  Google Scholar 

  • Grayston SJ, Vaughan D, Jones D (1996) Rhizosphere carbon flow in trees, in comparison with annual plants: the importance of root exudation and its impact on microbial activity and nutrient availability. Appl Soil Ecol 5:29–56

    Article  Google Scholar 

  • Gregoritch EG, Beare MH, Stoklas U, St-Georges P (2003) Biodegradability of soluble organic matter in maize cropped soils. Geoderma 113:357–380

    Article  CAS  Google Scholar 

  • Grundmann GL, Debouzie D (2000) Geostatistical analysis of the distribution of \(\hbox{NH}_4^+\) and \(\hbox{NO}_2^-\)-oxidizing bacteria and serotypes at the millimeter scale along a soil transect. FEMS Microbiol Ecol 34:57–62

    PubMed  CAS  Google Scholar 

  • Guggenberger G, Kaiser K (2003) Dissolved organic matter in soil: challenging the paradigm of sorptive preservation. Geoderma 113:293–310

    Article  CAS  Google Scholar 

  • Hamilton EW III, Frank DA (2001) Can plants stimulate soil microbes and their own nutrient supply? Evidence from a grazing tolerant grass. Ecology 82(9):2397–2402

    Article  Google Scholar 

  • Harte J, Kinzig A (1993) Mutualism and competition between plants and decomposers: implications for nutrient allocation in ecosystems. Am Nat 141(6):829–846

    Article  CAS  PubMed  Google Scholar 

  • Hodge A, Paterson E, Grayston SJ, Campbell CD, Ord BG, Killham K (1998) Characterisation and microbial utilization of exudate material from the rhizosphere of Lolium perenne grown under CO2 enrichment. Soil Biol Biochem 30(8–9):1033–1043

    Article  CAS  Google Scholar 

  • Hodge A, Robinson D, Fitter A (2000) Are microorganisms more effective than plants at competing nitrogen? Trends Plant Sci 5(7):304–308

    Article  PubMed  CAS  Google Scholar 

  • Høgh-Jensen H, Wollenweber B, Schjoerring K (1997) Kinetics of nitrate and ammonium absorption and accompanying H+ fluxes in roots of Lolium perenne L. and N2-fixing Trifolium repens L. Plant Cell Environ 20:1184–1192

    Article  Google Scholar 

  • Ingham RE, Trofymow JA, Ames RN, Hunt HW, Morley CR, Moore JC, Coleman DC (1986a) Trophic interactions and nitrogen cycling in a semi-arid grassland. I. Seasonal dynamics of the natural populations, their interactions and effects on nitrogen cycling. J Appl Ecol 23:597–614

    Article  Google Scholar 

  • Ingham RE, Trofymow JA, Ames RN, Hunt HW, Morley CR, Moore JC, Coleman DC (1986b) Trophic interactions and nitrogen cycling in a semi-arid grassland. II. System response to removal of different groups of soil microbes or fauna. J Appl Ecol 23:615–630

    Article  CAS  Google Scholar 

  • Jensen LE, Nybroe O (1999) Nitrogen availability to Pseudomonas fluorescence df57 is limited during decomposition of barley straw in bulk soil and in the barley rhizosphere. Appl Environ Microbiol 65(10):4320–4328

    PubMed  CAS  Google Scholar 

  • Jones DL, Darrah PR (1992) Resorption of organic components by roots of Zea mays L. and its consequences in the rhizosphere. I. Resorption of 14C-labelled glucose, mannose and citric-acid. Plant Soil 143:252–266

    Article  Google Scholar 

  • Jones DL, Darrah PR (1993) Influx and efflux of amino-acids from Zea mays L. roots and their implications for N-nutrition and the rhizosphere. Plant Soil 156:87–90

    Article  Google Scholar 

  • Jones DL, Darrah PR (1995) Influx and efflux of organic-acids across the soil–root interface of Zea mays L. and its implications in the rhizosphere C flow. Plant Soil 173:103–109

    Article  CAS  Google Scholar 

  • Jones DL, Hodge A (1999) Biodegradation kinetics and sorption reactions of three differently charged amino acids in soil and their effects on plant organic nitrogen availability. Soil Biol Biochem 31:1331–1342

    Article  CAS  Google Scholar 

  • Jones DL, Edwards AC, Donachie K, Darrah PR (1994) Role of proteinaceous amino acids released in root exudates in nutrient acquisition from the rhizosphere. Plant Soil 158:183–192

    Article  CAS  Google Scholar 

  • Jones TH, Thompson LJ, Lawton JH, Bezemer TM, Bardgett RD, Blackburn TM, Bruce KD, Cannon PF, Hall GS, Hartley SE, Howson G, Jones CG, Kampichler C, Kandeler E, Ritchie DA (1998) Impacts of rising atmospheric carbon dioxide on model terrestrial ecosystems. Science 280(5362):441–443

    Article  PubMed  CAS  Google Scholar 

  • Kalbitz K, Schmerwitz J, Schwesig D, Matzner E (2003) Biodegradation of soil-derived dissolved organic matter as related to its properties. Geoderma 113:273–291

    Article  CAS  Google Scholar 

  • Kaye JP, Hart SC (1997) Competition for nitrogen between plants and soil microorganisms. Trends Ecol Evol 12(4):139–143

    Article  Google Scholar 

  • Killham K (1994) Soil ecology. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Koops H-P, Pommerening-Röser A (2001) Distribution and ecophysiology of the nitrifying bacteria emphazising cultured species. FEMS Microbiol Ecol 37:1–9

    Article  CAS  Google Scholar 

  • Korsaeth A, Molstad L, Bakken LR (2001) Modelling the competition for nitrogen between plants and microflora as a function of soil heterogeneity. Soil Biol Biochem 33(2):215–226

    Article  CAS  Google Scholar 

  • Kuchenbuch R, Jungk A (1982) A method for determining concentration profiles at the soil–root interface by thin slicing rhizospheric soil. Plant Soil 68:391–394

    Article  CAS  Google Scholar 

  • Kuzyakov Y, Raskatov A, Kaupenjohann M (2003) Turnover and distribution of root exudates of Zea mays. Plant Soil 254(2):317–327

    Article  CAS  Google Scholar 

  • Lähdesmäki P, Piispanen R (1992) Soil enzymology: role of protective colloid systems in the preservation of exoenzymes activities in soil. Soil Biol Biochem 24(11):1173–1177

    Article  Google Scholar 

  • Leadley PW, Reynolds JF, Chapin FS III (1997) A model of nitrogen uptake by Eriophorum vaginatum roots in the field: ecological implications. Ecol Monogr 67(1):1–22

    Article  Google Scholar 

  • Liljeroth E, Kuikman P, van Veen JA (1994) Carbon translocation to the rhizosphere of maize and wheat and influence on the turn-over of native soil organic matter at different soil nitrogen levels. Plant Soil 161:233–240

    Article  Google Scholar 

  • Loreau M (2001) Microbial diversity, producer-decomposer interactions and ecosystem processes: a theoretical model. P R Soc London B-Biol Sci 268:303–309

    Article  CAS  Google Scholar 

  • Mary B, Recous S, Darwis D, Robin D (1996) Interactions between decomposition of plant residues and nitrogen cycling in soil. Plant Soil 181:71–82

    Article  CAS  Google Scholar 

  • Meier-Wagner J, Nolden L, Jakoby M, Siewe R, Krämer R, Burkovski A (2001) Multiplicity of ammonium uptake systems in Corynebacterium glutamicum: role of amt and amtb. Microbiology 147:135–143

    PubMed  CAS  Google Scholar 

  • Merrick MJ, Edwards RA (1995) Nitrogen control in bacteria. Microbiol Rev 59(4):604–622

    PubMed  CAS  Google Scholar 

  • Nannipieri P, Muccini L, Ciardi C (1983) Microbial biomass and enzyme activities: production and persistence. Soil Biol Biochem 15(6):679–685

    Article  CAS  Google Scholar 

  • Nielsen KL, Lynch JP, Jablokow AG, Curtis PS (1994) Carbon cost of root systems: an architectural approach. Plant Soil 165:161–169

    Article  CAS  Google Scholar 

  • Nye PH, Tinker PB (1977) Solute movement in the soil–root system. Blackwell Scientific, Oxford, UK

    Google Scholar 

  • Owen AG, Jones DL (2001) Competition for amino acids between wheat roots and rhizosphere microorganisms and the role of amino acids in plant N acquisition. Soil Biol Biochem 33:651–657

    Article  CAS  Google Scholar 

  • Papavizas GC, Davey CB (1961) Extent and nature of the rhizosphere of Lupinus. Plant Soil 14:215–236

    Article  Google Scholar 

  • Paterson E (2003) Importance of rhizodeposition in the coupling of plant and microbial productivity. Eur J Soil Sci 54(4):741–750

    Article  Google Scholar 

  • Paul EA, Clark FE (1989) Soil microbiology and biochemistry. Academic Press, San Diego, CA, pp 275

    Google Scholar 

  • Pelmont J (1993) Bactéries et environement: adaptations physiologiques. Presses universitaires de Grenoble, Grenoble, France

    Google Scholar 

  • Prescott L, Harley J, Klein D (1999) Microbiologie, 2nd edn. De Boeck Université, Bruxelles

    Google Scholar 

  • Riha SJ, Campbell GS, Wolfe J (1986) A model of competition for ammonium among heterotrophs, nitrifiers and roots. Soil Sci Soc Am J 50:1463–1466

    Article  CAS  Google Scholar 

  • Rønn R, Gavito M, Larsen J, Jakobsen I, Frederiksen H, Christensen S (2002) Response of free-living soil protozoa and microorganisms to elevated atmospheric CO2 and presence of mycorrhiza. Soil Biol Biochem 34(7):923–932

    Article  Google Scholar 

  • Rønn R, Ekelund F, Christensen S (2003) Effects of elevated atmospheric CO2 on protozoan abundance in soil planted with wheat and on decomposition of wheat roots. Plant Soil 251:13–21

    Article  Google Scholar 

  • Strobel BW (2001) Influence of vegetation on low-molecular-weight carboxylic acids in soil solution—a review. Geoderma 99:169–198

    Article  CAS  Google Scholar 

  • Taylor JP, Wilson B, Mills MS, Burns RG (2002) Comparison of microbial numbers and enzymatic activities in surface soils and subsoils using various techniques. Soil Biol Biochem 34:387–401

    Article  CAS  Google Scholar 

  • Tinker PB, Nye PH (2000) Solute movement in the rhizosphere. Oxford University Press, Oxford, UK

    Google Scholar 

  • Trinsoutrot I, Recous S, Mary B, Nicolardot B (2000) C and N fluxes of decomposing 13C and 15N Brassica napus L.: effects of residue composition and N content. Soil Biol Biochem 32:1717–1730

    Article  CAS  Google Scholar 

  • van Breemen N, Finzi AC (1998) Plant–soil interactions: ecological aspects and evolutionary implications. Biogeochemistry 42:1–19

    Article  Google Scholar 

  • van Hees PAW, Vinogradoff SI, Edwards AC, Godbold DL, Jones DL (2003) Low molecular weight organic acid adsorption in forest soils: effects on soil solution concentrations and biodegradation rates. Soil Biol Biochem 35(8):1015–1026

    Article  CAS  Google Scholar 

  • Verhagen FJM, Hageman PEJ, Woldendorp JW, Laanbroek HJ (1994) Competition for ammonium between nitrifying bacteria and plant roots in soil in pots; effects of grazing by flagellates and fertilization. Soil Biol Biochem 26(1):89–96

    Article  CAS  Google Scholar 

  • Verhagen FJM, Laanbroek HJ, Wolendorp JW (1995) Competition for ammonium between plant roots and nitrifying and heterotrophic bacteria and the effects of protozoan grazing. Plant Soil 170:241–250

    Article  CAS  Google Scholar 

  • Vinolas LC, Healey JR, Jones DL (2001) Kinetics of soil microbial uptake of free amino acids. Biol Fert Soils 33(1):67–74

    Article  CAS  Google Scholar 

  • Williams M, Yanai RD (1996) Multi-dimensional sensitivity analysis and ecological implications of a nutrient uptake model. Plant Soil 180:311–324

    Article  CAS  Google Scholar 

  • Williams MA, Rice CW, Owensby CE (2000) Carbon dynamics and microbial activity in tallgrass prairie exposed to elevated CO2 for 8 years. Plant Soil 227(1–2):127–137

    Article  CAS  Google Scholar 

  • Wright DA, Killham K, Glover LA, Prosser JL (1995) Role of pore size location in determining bacterial activity during predation by protozoa in soil. Appl Environ Microbiol 61(10):3537–3543

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully thank three anonymous referees and the editor for valuable comments on a prior version of this manuscript. Computer source code of the model is available from X. Raynaud upon requests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xavier Raynaud.

Appendices

Appendix A: Pool variations equations

Symbols are the same that were given in the text. \(\hbox{Upt}_{P}(\hbox{NH}_{4}^{+})\) and \(\hbox{Upt}_{P}(\hbox{NO}_{3}^{-})\) represent respectively ammonium and nitrate uptake rate by plant (see Leadley et al. 1997, for details). \(\hbox{Ex}(\hbox{N}_{\rm org}^{i})\) and \(\hbox{Ex}(\hbox{C}_{\rm org}^{i})\) are the rate of exudation of organic matter from class i by plant. All these plant variables only occur in the first soil cylinder (against the rhizoplane) and are equal to 0 in the other cylinders. For simplicity sake, variations of concentrations of \(\hbox{NH}_{4}^{+}, \hbox{NO}_{3}^{-}\) and organic N or C between cylinders due to diffusion and mass fluxes are expressed by the factor F c(X). Details on calculating F c factor between cylinders are given in Leadley et al. (1997).

Subscript A represents a parameter for total biomass of ammonifying bacteria, N for total biomass of nitrifying bacteria and B for the total biomass of every bacterial population (i.e. A+N).

Ammonifying bacteria

Organic N in biomass

$$\eqalign{ \frac{d \hbox{N}_{{\rm org}_{{\rm in}\;A_{\rm N}}}}{dt}& = \hbox{Assim}_{A}(\hbox{NH}_{4}^{+})+ \hbox{Upt}_{A}(\hbox{N}_{\rm org}^{1})\cr \quad-\frac{d\hbox{NRS}_{{A}_{\rm N}}}{dt}-q_{A_{\rm N}}-\hbox{Pred}_{A}\cr &\quad -A_{\rm N}\left(\hbox{synth}_{\rm E}+\mu_{\rm A}(\hbox{NH}_{4}^{+})\right.\cr &\qquad\qquad\left.+\mu_{\rm A} (\hbox{NO}_{3}^{-})+\mu_{\rm A}(\hbox{N}_{\rm org}^{1})\right) } $$
$$ \eqalign{ \frac{d\hbox{N}_{{\rm org}_{{\rm in}\; A_ {\rm C}}}}{dt}& =\hbox{Upt}_{A}(\hbox{C}_{\rm org}^{1})- \frac{d\hbox{NRS}_{A_{\rm C}}}{dt}-q_{A_{\rm C}}\cr \quad-\hbox{C:N}_{A}\cdot \hbox{Pred}_{A}-A_{\rm C}\left(\hbox{C:N}_{\rm E}\cdot \hbox{synth}_{\rm E}\right.\cr &\left. \hskip2.5pt\quad+\mu_{A} (\hbox{CO}_{2})+\mu_{A}(\hbox{C}_{\rm org}^{1})\right) } $$

Intra-cellular ammonium

$$ \eqalign{ \frac{d\hbox{NH}_{{4}_{\rm in}}^{+}}{dt}& = \hbox{Upt}_{A}(\hbox{NH}_{4}^{+})+\hbox{Red}_{A} (\hbox{NO}_{3}^{-})\cr &\quad -\hbox{Assim}_{A}(\hbox{NH}_{4}^{+}) } $$

Intra-cellular nitrate

$$ \frac{d\hbox{NO}_{{3}_{\rm in}}^{-}}{dt} = \hbox{Upt}_{A}(\hbox{NO}_{3}^{-})-\hbox{Red}_{A} (\hbox{NO}_{3}^{-}) $$

Nitrate reduction enzymatic system

Relation is given in Eq. (7).

Nitrifying bacteria

Organic N in biomass

$$ \begin{aligned} \frac{d\hbox{N}_{{\rm org}_{{\rm in}\; N_{\rm N}}}}{dt} = & \hbox{Assim}_{N}(\hbox{NH}_{4}^{+})- \frac{d\hbox{NRS}_{N_{\rm N}}}{dt}-q_{N_{\rm N}}-\hbox{Pred}_{N}\\ & -N_{\rm N}\left(\mu_{N}(\hbox{NH}_{4}^{+})+\mu_{\rm N}(\hbox{NO}_{3}^{-})+ \mu_{\rm N}(\hbox{N}_{\rm org}^{1})\right) \end{aligned} $$
$$ \eqalign{ \frac{d\hbox{N}_{{\rm org}_{{\rm in}\;N_{\rm C}}}}{dt} &= \hbox{Assim}_{N}(\hbox{CO}_{2})- \frac{d\hbox{NRS}_{N_{\rm C}}}{dt}-q_{N_{\rm C}}\cr &\quad-\hbox{C:N}_{N} \cdot \hbox{Pred}_{N}\cr & \quad-N_{\rm C}\left(\mu_{\rm N}(\hbox{CO}_{2})+\mu_{\rm N}(\hbox{C}_{\rm org}^{1})\right) }$$

Intra-cellular ammonium

$$\eqalign{ \frac{d\hbox{NH}_{{4}_{\rm in}}^{+}}{dt} = \hbox{Upt}_{N}(\hbox{NH}_{4}^{+})+\hbox{Red}_{N} (\hbox{NO}_{3}^{-})\cr\quad-\hbox{Assim}_{N}(\hbox{NH}_{4}^{+})-\hbox{Redox} }$$

Intra-cellular nitrate

$$ \frac{d\hbox{NO}_{{3}_{\rm in}}^{-}}{dt} = \hbox{Upt}_{N}(\hbox{NO}_{3}^{-})-\hbox{Red}_{N} (\hbox{NO}_{3}^{-}) $$

Nitrate reduction enzymatic system

Relation is given in Eq. (7).

Mineral soil products

Soil solution ammonium

$$ \eqalign{\frac{d\hbox{NH}_{4}^{+}}{dt} = A_{\rm N}\mu_{A}(\hbox{NH}_{4}^{+})+ N_{\rm N}\mu_{N}(\hbox{NH}_{4}^{+})\cr \quad+M_{B}(\hbox{NH}_{4}^{+})+ q_{A_{\rm N}}-\hbox{Upt}_{B}(\hbox{NH}_{4}^{+})\cr \quad-\hbox{Upt}_{P}(\hbox{NH}_{4}^{+})+ F_{\rm c}(\hbox{NH}_{4}^{+})} $$

Soil solution nitrate

$$ \eqalign{ \frac{d\hbox{NO}_{3}^{-}}{dt}& = A_{\rm N}\mu_{A}(\hbox{NO}_{3}^{-})+ N_{\rm N}\mu_{N}(\hbox{NO}_{3}^{-})+\hbox{Redox}\cr \quad+M_{B}(\hbox{NO}_{3}^{-})+ q_{N_{\rm N}}-U_{B}(\hbox{NO}_{3}^{-})\cr &\quad-\hbox{Upt}_{P}(\hbox{NO}_{3}^{-}) +F_{\rm c}(\hbox{NO}_{3}^{-}) } $$

Soil carbon dioxide

$$ \frac{d\hbox{CO}_{2}}{dt}=B_{\rm N}\cdot\mu_{B}(\hbox{CO}_{2})+ q_{B_{\rm C}}-\hbox{Assim}_{N}(\hbox{CO}_{2}) $$

Soil organic matter

Organic matter (n classes)

The equation given here is general. Functions that has not been defined in the text like those concerning organic compounds larger than n, are assumed to be zero.

If i>1, variations in the organic pools are expressed as:

$$ \eqalign{ \frac{d\hbox{N}_{\rm org}^{i}}{dt}& = \hbox{Ex}(\hbox{N}_{\rm org}^{i})+A_{\rm N}\mu_{A} (\hbox{N}_{\rm org}^{i})+N_{\rm N}\mu_{N}(\hbox{N}_{\rm org}^{i})\cr \quad+\mu_{\rm E}\hbox{E}_{\rm N}+ M_{B}(\hbox{N}_{\rm org}^{i})+F_{\rm c}(\hbox{N}_{\rm org}^{i})-D_{i}(\hbox{N}_{\rm org}^{i})\cr &\quad +D_{i+1}(\hbox{N}_{\rm org}^{i+1})-S_{i+1} (\hbox{N}_{\rm org}^{i+1}) } $$
$$ \eqalign{ \frac{d\hbox{C}_{\rm org}^{i}}{dt}& = \hbox{Ex}(\hbox{C}_{\rm org}^{i})+A_{\rm N}\mu_{A} (\hbox{C}_{\rm org}^{i})+N_{\rm N}\mu_{N}(\hbox{C}_{\rm org}^{i})\cr \quad+\hbox{C:N}_{\rm E} \mu_{\rm E}\hbox{E}_{\rm N}+M_{B}(\hbox{C}_{\rm org}^{i})+F_{\rm c}(\hbox{C}_{\rm org}^{i})\cr &\quad -D_{i}(\hbox{C}_{\rm org}^{i})+D_{i+1}(\hbox{C}_{\rm org}^{i+1})-S_{i+1} (\hbox{C}_{\rm org}^{i+1}) } $$

If i=1, the equation is :

$$ \eqalign{ \frac{d\hbox{N}_{\rm org}^{1}}{dt} & =\hbox{Ex}(\hbox{N}_{\rm org}^{1})-\hbox{Upt}_{A}(\hbox{N}_{\rm org}^{1})+ A_{\rm N}\mu_{A}(\hbox{N}_{\rm org}^{1})\cr \quad+N_{\rm N}\mu_{N}(\hbox{N}_{\rm org}^{1})+ \mu_{\rm E}\hbox{E}_{\rm N}+M_{B}(\hbox{N}_{\rm org}^{1})\cr \quad +F_{\rm c}(\hbox{N}_{\rm org}^{1})-S_{1}(\hbox{NH}_{4}^{+})+\sum_{j=1}^{n}S_{j} (\hbox{N}_{\rm org}^{j}) } $$
$$ \eqalign{ \frac{d\hbox{C}_{\rm org}^{1}}{dt} &= {\rm Ex}(\hbox{C}_{\rm org}^{1})-\hbox{Upt}_{A}(\hbox{C}_{\rm org}^{1})+ A_{\rm N}\mu_{A}(\hbox{C}_{\rm org}^{1})\cr \quad+N_{\rm N}\mu_{N}(\hbox{C}_{\rm org}^{1})+ \hbox{C:N}_{\rm E}\mu_{\rm E}E_{\rm N}+M_{B}(\hbox{C}_{\rm org}^{1})\cr \quad+F_{\rm c}(\hbox{C}_{\rm org}^{1})+\sum_{j=1}^{n}S_{j}(\hbox{C}_{\rm org}^{j}) } $$

External enzymes

Variations for this pool are given in Eq. (15).

Appendix B: Plant and soil parameters

Plant parameters are given in Table 5, soil parameters are given in Table 6.

Table 5 Symbols, units and common values of plant parameters
Table 6 Symbols, units and common values of soil parameters

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raynaud, X., Lata, JC. & Leadley, P.W. Soil microbial loop and nutrient uptake by plants: a test using a coupled C:N model of plant–microbial interactions. Plant Soil 287, 95–116 (2006). https://doi.org/10.1007/s11104-006-9003-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-006-9003-9

Keywords

Navigation