Skip to main content

Advertisement

Log in

A climate response function explaining most of the variation of the forest floor needle mass and the needle decomposition in pine forests across Europe

  • Research Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

The forest floor needle mass and the decomposition rates of pine needle litter in a European climate transect were studied in order to estimate the impact of climate change on forest soil carbon sequestration. Eight pine forests preserved from fire were selected along a climatic latitudinal gradient from 40° to 60° N, from Spain and Portugal to Sweden. The forest floor (Oi and Oe layers) was sorted into five categories of increasing decomposition level according to morphological criteria. The needle mass loss in each category was determined using a linear mass density method. The needle decomposition rate was calculated from the needle fall (NF), the mass of each category and its mass loss. For each site, the remaining mass vs. the calculated time was best fitted by an asymptotic model which indicates that the organic matter should be made up of two fractions: a decomposable one and a recalcitrant one. NF was correlated with actual evapotranspiration (AET) whereas the decomposition parameters (decomposition rate of the decomposable fraction, first year mass loss, forest floor needle mass, age of the most-decomposed category) were related to a combined response function to climate (CRF) based on the van’t Hoff law for temperature and the water deficit (DEF) for moisture. Scenarios with temperature increases, without and with DEF increases, were applied to predict forest floor needle mass changes. C would be lost from the forest floor if only temperature increases and this loss would increase from south to north. If more droughts occur, the forest floor would then tend to sequester C according to the level of the DEF and the latitude of the site. For example, a site in Portugal which is presently the most active site of the transect in terms of decomposition because of its present favourable warm Atlantic climate would react with a large range of responses, losing carbon under an unchanged precipitation regime and sequestering up to 3 times its present stock of carbon under drier conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AET:

Actual evapotranspiration

CRF:

Combined response function

DEF:

Water deficit

FF:

Forest floor needle mass

MAP:

Mean annual precipitation

MAT:

Mean annual temperature

ML1:

First year mass loss

NF:

Needle fall

NSN:

Newly shed needles

RM:

Remaining mass

References

  • Akselsson C, Berg B, Meentemeyer V, Westling O (2005) Carbon sequestration rates in organic layers of boreal and temperate forest soils – Sweden as a case study. Global Ecol Biogeogr 14:77–84

    Article  Google Scholar 

  • Andrén O, Paustian K (1987) Barley straw decomposition in the field: a comparison of models. Ecology 68:1190–1200

    Article  Google Scholar 

  • Arianoutsou M, Radea C (2000) Litter production and decomposition in Pinus halepensis forests. In: Ne’eman G, Trabaud L (eds) Ecology, biogeography and management of Pinus halepensis and P. brutia forest ecosystems in the Mediterranean basin. Blackhuys Publishers, Leiden, The Netherlands, pp 183–190

    Google Scholar 

  • Berg B, Berg MP, Bottner P, Box E, Breymeyer A, Calvo de Anta R, Coûteaux MM, Escudero A, Gallardo A, Kratz W, Madeira M, Mälkönen E, McClaugherty C, Meentemeyer V, Muñoz F, Piussi P, Remacle J, Virzo De Santo A (1993) Litter mass loss rates in pine forests of Europe and Eastern United States: some relationships with climate and litter quality. Biogeochemistry 20:127–159

    Article  Google Scholar 

  • Berg B, Ekbohm G, Johansson MB, McClaugherty C, Rutigliano F, Virzo De Santo A (1996) Maximum decomposition limits of forest litter types: a synthesis. Can J Bot 74:659–672

    Article  Google Scholar 

  • Berg MP, Verhoef HA, Anderson JM, Beese F, Bolger T, Coûteaux MM, Ineson P, McCarthy F, Palka L, Raubuch M, Splatt P, Willison T (1997) Effects of air pollutant-temperature interactions on mineral-N dynamics and cation leaching in replicate forest soil transplantation experiment. Biogeochemistry 39:295–326

    Article  CAS  Google Scholar 

  • Berg B, Albrektson A, Berg MP, Cortina J, Johansson MB, Gallardo A, Madeira M, Pausas J, Kratz W, Vallejo R, McClaugherty C (1999) Amounts of litterfall in some pine forests in the northern hemisphere, especially Scots pine. Ann For Sci 56:625–639

    Google Scholar 

  • Berg B, McClaugherty C, Virzo De Santo A, Johnson D (2001) Humus buildup in boreal forests: effects of litter fall and its N concentration. Can J Forest Res 31:988–998

    Article  CAS  Google Scholar 

  • Berg B, Meentemeyer V (2001) Litter fall in some European coniferous forests as dependent on climate: a synthesis. Can J Forest Res 31:292–301

    Article  Google Scholar 

  • Binkley D (2002) Ten-year decomposition in a loblolly pine forest. Can J Forest Res 32:2231–2235

    Article  Google Scholar 

  • Bottner P, Coûteaux MM, Anderson JM, Berg B, Billès G, Bolger T, Casabianca H, Romanyà J, Rovira P (2000) Decomposition of 13C labelled plant material in a European 60°−40° latitudinal transect of coniferous forest soils: simulation of climate change by translocation of soils. Soil Biol Biochem 32:527–543

    Article  CAS  Google Scholar 

  • Casals P, Romanyà J, Cortina J, Bottner P, Coûteaux MM, Vallejo VR (2000) CO2 efflux from a Mediterranean semi-arid forest soil. I. Seasonality and effects of stoniness. Biogeochemistry 48:261–281

    Article  Google Scholar 

  • Chang CW, Laird DA, Mausbach MJ, Hurburgh CR (2001) Near-infrared reflectance spectroscopy-principal components regression analyses of soil properties. Soil Sci Soc Am J 65:480–490

    Article  CAS  Google Scholar 

  • Chaturvedi OP, Singh JS (1987) A quantitative study of the forest floor biomass, litter fall and nutrient return in a Pinus-Roxburghii forest in Kumaun Himalaya. Vegetatio 71:97–105

    Google Scholar 

  • Coûteaux MM, McTiernan KB, Berg B, Szuberla D, Dardenne P, Bottner P (1998) Chemical composition and carbon mineralisation potential of Scots pine needles at different stages of decomposition. Soil Biol Biochem 30:583–595

    Article  Google Scholar 

  • Coûteaux MM, Bottner P, Anderson JM, Berg B, Bolger T, Casals P, Romanyà J, Thiéry JM, Vallejo VR (2001) Decomposition of 13C-labelled standard plant material in a latitudinal transect of European coniferous forests: differential impact of climate on the decomposition of soil organic matter compartments. Biogeochemistry 54:147–170

    Article  Google Scholar 

  • Coûteaux MM, Sarmiento L, Bottner P, Acevedo D, Thiéry JM (2002) Decomposition of standard plant material along an altitudinal transect (65–3968 m) in the tropical Andes. Soil Biol Biochem 34:69–78

    Article  Google Scholar 

  • Dagnelie P (1986) Théorie et méthodes statistiques. Applications agronomiques, vol 2. Les méthodes de l’inférence statistique. Les Presses Agronomiques de Gembloux, pp 463

  • Dames JF, Scholes MC, Straker CJ (1998) Litter production and accumulation in Pinus patula plantations of the Mpumalanga Province, South Africa. Plant Soil 203:183–190

    Article  CAS  Google Scholar 

  • Fassnacht KS, Gower ST (1999) Comparison of the litterfall and forest floor organic matter and nitrogen dynamics of upland forest ecosystems in north central Wisconsin. Biogeochemistry 45:265–284

    Google Scholar 

  • Fioretto A, Musacchio A, Andolfi G, Virzo De Santo A (1998) Decomposition dynamics of litters of various pine species in a Corsican pine forest. Soil Biol Biochem 30:721–727

    Article  CAS  Google Scholar 

  • García-Plé C, Vanrell P, Morey M (1995) Litter fall and decomposition in a Pinus-Halepensis forest on Mallorca. J Veget Sci 6:17–22

    Article  Google Scholar 

  • Gholz HL, Wedin DA, Smitherman SM, Harmon ME, Parton WJ (2000) Long-term dynamics of pine and hardwood litter in contrasting environments: toward a global model of decomposition. Global Change Biol 6:751–765

    Article  Google Scholar 

  • Gourbière F (1981) Vie, sénescence et décomposition des aiguilles de sapin (Abies alba Mill.). I. Méthodologie et premiers résultats. Acta Oecol-Oec Plant 2:223–232

    Google Scholar 

  • Jackson RB, Canadell J, Ehleringer JR, Mooney HA, Sala OE, Schulze ED (1996) A global analysis of root distributions for terrestrial biomes. Oecologia 108:389–411

    Article  Google Scholar 

  • Jansson PE, Berg B (1985) Temporal variation of litter decomposition in relation to simulated soil climate. Long-term decomposition in a Scots pine forest. Can J Bot 63:1008–1016

    Google Scholar 

  • Jenkinson DS (1990) The turnover of organic carbon and nitrogen in soil. Phil Trans R Soc London 329:361–368

    CAS  Google Scholar 

  • Karl TR, Knight RW, Kukla G, Plummer N, Razuvayev V, Gallo KP, Lindsay J, Charlson RJ, Peterson TC (1993) A new perspective on recent global warming: asymmetric trends of daily maximum and minimum temperature. Bull Am Meteorol Soc 74:1007–1023

    Article  ADS  Google Scholar 

  • Karl TR, Knight RW, Kukla G, Plummer N (1995) Trends in high frequency climate variability in the twentieth century. Nature 377:217–220

    Article  CAS  ADS  Google Scholar 

  • Kätterer T, Reichstein M, Andrén O, Lomander A (1998) Temperature dependence of organic matter decomposition: a critical review using literature data analyzed with different models. Biol Fert Soils 27:258–262

    Article  Google Scholar 

  • Kavvadias VA, Alifragis D, Tsiontsis A, Brofas G, Stamatelos G (2001) Litterfall, litter accumulation and litter decomposition rates in four forest ecosystems in Northern Greece. Forest Ecol Manage 144:113–127

    Article  Google Scholar 

  • Kendrick WB (1959) The time factor in the decomposition of coniferous leaf litter. Can J Bot 37:907–912

    Article  Google Scholar 

  • Kirschbaum MUF, Paul KI (2002) Modelling C and N dynamics in forest soils with a modified version of the CENTURY model. Soil Biol Biochem 34:341–354

    Article  CAS  Google Scholar 

  • Koide RT, Shumway DL (2000) On variation in forest floor thickness across four red pine plantations in Pennsylvania, USA. Plant Soil 219:57–69

    Article  CAS  Google Scholar 

  • Kurz C, Coûteaux MM, Thiéry JM (2000) Residence time and decomposition rate of Pinus pinaster needles in a forest floor from direct field measurements under a Mediterranean climate. Soil Biol Biochem 32:1197–1206

    Article  CAS  Google Scholar 

  • Kurz-Besson C, Coûteaux MM, Thiéry JM, Berg B, Remacle J 2005 A comparison of litterbag and direct observation methods of Scots pine needle decomposition measurement. Soil Biol Biochem 37:2315–2318

    Article  CAS  Google Scholar 

  • Madeira M, Ribeiro C (1995) Influence of leaf litter type on the chemical evolution of a soil parent material (sandstone). Biogeochemistry 29:43–58

    Article  CAS  Google Scholar 

  • Mahouff JF, Cariolle D, Royer JF, Geleyn JF, Timbal B (1994) Response of the Météo-France climate model to changes in CO2 and sea surface temperature. Clim Dynam 9:345–362

    Article  ADS  Google Scholar 

  • McTiernan KB (1998) The effect of climate on the decomposition of chemical constituents of tree litters. PhD, University of Lancaster, UK, 175 pp

  • McTiernan KB, Coûteaux MM, Berg B, Berg MP, Calvo de Anta R, Gallardo A, Kratz W, Piussi P, Remacle J, Virzo De Santo A (2003) Changes in chemical composition of Pinus sylvestris needle litter during decomposition along an European coniferous forest climatic transect. Soil Biol Biochem 35:801–812

    Article  CAS  Google Scholar 

  • Moro MJ, Domingo F (2000) Litter decomposition in four woody species in a Mediterranean climate: weight loss, N and P dynamics. Ann Bot 86:1065–1071

    Article  CAS  Google Scholar 

  • Parton WJ, Schimel JP, Cole CV, Ojima DS (1987) Analysis of factors controlling soil organic matter levels in great plains grasslands. Soil Sci Soc Am J 51:1173–1179

    Article  CAS  Google Scholar 

  • Rapp M (1967) Production de litière et apport au sol d’éléments minéraux et d’azote dans un bois de pins d’Alep. Acta Oecol-Oec Plant 2:325–338

    Google Scholar 

  • Rodrigo A, Recous S, Neel C, Mary B (1997) Modelling temperature and moisture effects on C-N transformations in soils: comparison of nine models. Ecol Model 102:325–339

    Article  CAS  Google Scholar 

  • Roig S, del Rio M, Canellas I, Montero G (2005) Litter fall in Mediterranean Pinus pinaster Ait. stands under different thinning regimes. Forest Ecol Manage 206:179–190

    Article  Google Scholar 

  • Santa Regina IS (2001) Litter fall, decomposition and nutrient release in three semi-arid forests of the Duero basin, Spain. Forestry 74:347–358

    Article  Google Scholar 

  • Sharpe DM, Prowse CW (1983) WATERBUD: water budget concepts and applications. Environmental Simulations Laboratory, Carbondale, IL, USA

    Google Scholar 

  • Starr M, Saarsalmi A, Hokkanen T, Merila P, Helmisaari HS (2005) Models of litterfall production for Scots pine (Pinus sylvestris L.) in Finland using stand, site and climate factors. Forest Ecol Manage 205:215–225

    Article  Google Scholar 

  • Sun OJ, Campbell J, Law BE, Wolf V (2004) Dynamics of carbon stocks in soils and detritus across chronosequences of different forest types in the Pacific Northwest, USA. Global Change Biol 10:1470–1481

    Article  Google Scholar 

  • Thornthwaite CW, Mather JR (1957) Instructions and tables for computing potential evapotranspiration and the water balance. Publ Clim 10:185–311

    Google Scholar 

  • Virzo De Santo A, Berg B, Rutigliano FA, Alfani A, Fioretto A (1993) Factors regulating early-stage decomposition of needle litters in five different coniferous forests. Soil Biol Biochem 25:1423–1433

    Article  Google Scholar 

  • Walse C, Berg B, Sverdrup H (1998) Review and synthesis of experimental data on organic matter decomposition with respect to the effect of temperature, moisture, and acidity. Environ Rev 6:25–40

    Article  CAS  Google Scholar 

  • Wardle DA, Zackrisson O, Hornberg G, Gallet C (1997) The influence of island area on ecosystem properties. Science 277:1296–1299

    Article  CAS  Google Scholar 

  • Wardle DA, Nilsson MC, Zackrisson O, Gallet C (2003) Determinants of litter mixing effects in a Swedish boreal forest. Soil Biol Biochem 35:827–835

    Article  CAS  Google Scholar 

  • Wildung RE, Garland TR, Buschbom RL (1975) The interdependent effects of soil temperature and water content on soil respiration rate and plant root decomposition in arid grassland soils. Soil Biol Biochem 7:373–378

    Article  CAS  Google Scholar 

  • Yanai RD, Stehman SV, Arthur MA, Prescott CE, Friedland AJ, Siccama TG, Binkley D (2003) Detecting change in forest floor carbon. Soil Sci Soc Am J 67:1583–1593

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. Coûteaux.

Additional information

Section Editor: C. Neill

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kurz-Besson, C., Coûteaux, M.M., Berg, B. et al. A climate response function explaining most of the variation of the forest floor needle mass and the needle decomposition in pine forests across Europe. Plant Soil 285, 97–114 (2006). https://doi.org/10.1007/s11104-006-0061-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-006-0061-9

Keywords

Navigation