Plant and Soil

, Volume 285, Issue 1–2, pp 97–114 | Cite as

A climate response function explaining most of the variation of the forest floor needle mass and the needle decomposition in pine forests across Europe

  • C. Kurz-Besson
  • M. M. Coûteaux
  • B. Berg
  • J. Remacle
  • C. Ribeiro
  • J. Romanyà
  • J. M. Thiéry
Research Article


The forest floor needle mass and the decomposition rates of pine needle litter in a European climate transect were studied in order to estimate the impact of climate change on forest soil carbon sequestration. Eight pine forests preserved from fire were selected along a climatic latitudinal gradient from 40° to 60° N, from Spain and Portugal to Sweden. The forest floor (Oi and Oe layers) was sorted into five categories of increasing decomposition level according to morphological criteria. The needle mass loss in each category was determined using a linear mass density method. The needle decomposition rate was calculated from the needle fall (NF), the mass of each category and its mass loss. For each site, the remaining mass vs. the calculated time was best fitted by an asymptotic model which indicates that the organic matter should be made up of two fractions: a decomposable one and a recalcitrant one. NF was correlated with actual evapotranspiration (AET) whereas the decomposition parameters (decomposition rate of the decomposable fraction, first year mass loss, forest floor needle mass, age of the most-decomposed category) were related to a combined response function to climate (CRF) based on the van’t Hoff law for temperature and the water deficit (DEF) for moisture. Scenarios with temperature increases, without and with DEF increases, were applied to predict forest floor needle mass changes. C would be lost from the forest floor if only temperature increases and this loss would increase from south to north. If more droughts occur, the forest floor would then tend to sequester C according to the level of the DEF and the latitude of the site. For example, a site in Portugal which is presently the most active site of the transect in terms of decomposition because of its present favourable warm Atlantic climate would react with a large range of responses, losing carbon under an unchanged precipitation regime and sequestering up to 3 times its present stock of carbon under drier conditions.


Latitudinal transect Litter mass loss Global change scenarios Direct method C sequestration 



Actual evapotranspiration


Combined response function


Water deficit


Forest floor needle mass


Mean annual precipitation


Mean annual temperature


First year mass loss


Needle fall


Newly shed needles


Remaining mass


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akselsson C, Berg B, Meentemeyer V, Westling O (2005) Carbon sequestration rates in organic layers of boreal and temperate forest soils – Sweden as a case study. Global Ecol Biogeogr 14:77–84CrossRefGoogle Scholar
  2. Andrén O, Paustian K (1987) Barley straw decomposition in the field: a comparison of models. Ecology 68:1190–1200CrossRefGoogle Scholar
  3. Arianoutsou M, Radea C (2000) Litter production and decomposition in Pinus halepensis forests. In: Ne’eman G, Trabaud L (eds) Ecology, biogeography and management of Pinus halepensis and P. brutia forest ecosystems in the Mediterranean basin. Blackhuys Publishers, Leiden, The Netherlands, pp 183–190Google Scholar
  4. Berg B, Berg MP, Bottner P, Box E, Breymeyer A, Calvo de Anta R, Coûteaux MM, Escudero A, Gallardo A, Kratz W, Madeira M, Mälkönen E, McClaugherty C, Meentemeyer V, Muñoz F, Piussi P, Remacle J, Virzo De Santo A (1993) Litter mass loss rates in pine forests of Europe and Eastern United States: some relationships with climate and litter quality. Biogeochemistry 20:127–159CrossRefGoogle Scholar
  5. Berg B, Ekbohm G, Johansson MB, McClaugherty C, Rutigliano F, Virzo De Santo A (1996) Maximum decomposition limits of forest litter types: a synthesis. Can J Bot 74:659–672CrossRefGoogle Scholar
  6. Berg MP, Verhoef HA, Anderson JM, Beese F, Bolger T, Coûteaux MM, Ineson P, McCarthy F, Palka L, Raubuch M, Splatt P, Willison T (1997) Effects of air pollutant-temperature interactions on mineral-N dynamics and cation leaching in replicate forest soil transplantation experiment. Biogeochemistry 39:295–326CrossRefGoogle Scholar
  7. Berg B, Albrektson A, Berg MP, Cortina J, Johansson MB, Gallardo A, Madeira M, Pausas J, Kratz W, Vallejo R, McClaugherty C (1999) Amounts of litterfall in some pine forests in the northern hemisphere, especially Scots pine. Ann For Sci 56:625–639Google Scholar
  8. Berg B, McClaugherty C, Virzo De Santo A, Johnson D (2001) Humus buildup in boreal forests: effects of litter fall and its N concentration. Can J Forest Res 31:988–998CrossRefGoogle Scholar
  9. Berg B, Meentemeyer V (2001) Litter fall in some European coniferous forests as dependent on climate: a synthesis. Can J Forest Res 31:292–301CrossRefGoogle Scholar
  10. Binkley D (2002) Ten-year decomposition in a loblolly pine forest. Can J Forest Res 32:2231–2235CrossRefGoogle Scholar
  11. Bottner P, Coûteaux MM, Anderson JM, Berg B, Billès G, Bolger T, Casabianca H, Romanyà J, Rovira P (2000) Decomposition of 13C labelled plant material in a European 60°−40° latitudinal transect of coniferous forest soils: simulation of climate change by translocation of soils. Soil Biol Biochem 32:527–543CrossRefGoogle Scholar
  12. Casals P, Romanyà J, Cortina J, Bottner P, Coûteaux MM, Vallejo VR (2000) CO2 efflux from a Mediterranean semi-arid forest soil. I. Seasonality and effects of stoniness. Biogeochemistry 48:261–281CrossRefGoogle Scholar
  13. Chang CW, Laird DA, Mausbach MJ, Hurburgh CR (2001) Near-infrared reflectance spectroscopy-principal components regression analyses of soil properties. Soil Sci Soc Am J 65:480–490CrossRefGoogle Scholar
  14. Chaturvedi OP, Singh JS (1987) A quantitative study of the forest floor biomass, litter fall and nutrient return in a Pinus-Roxburghii forest in Kumaun Himalaya. Vegetatio 71:97–105Google Scholar
  15. Coûteaux MM, McTiernan KB, Berg B, Szuberla D, Dardenne P, Bottner P (1998) Chemical composition and carbon mineralisation potential of Scots pine needles at different stages of decomposition. Soil Biol Biochem 30:583–595CrossRefGoogle Scholar
  16. Coûteaux MM, Bottner P, Anderson JM, Berg B, Bolger T, Casals P, Romanyà J, Thiéry JM, Vallejo VR (2001) Decomposition of 13C-labelled standard plant material in a latitudinal transect of European coniferous forests: differential impact of climate on the decomposition of soil organic matter compartments. Biogeochemistry 54:147–170CrossRefGoogle Scholar
  17. Coûteaux MM, Sarmiento L, Bottner P, Acevedo D, Thiéry JM (2002) Decomposition of standard plant material along an altitudinal transect (65–3968 m) in the tropical Andes. Soil Biol Biochem 34:69–78CrossRefGoogle Scholar
  18. Dagnelie P (1986) Théorie et méthodes statistiques. Applications agronomiques, vol 2. Les méthodes de l’inférence statistique. Les Presses Agronomiques de Gembloux, pp 463Google Scholar
  19. Dames JF, Scholes MC, Straker CJ (1998) Litter production and accumulation in Pinus patula plantations of the Mpumalanga Province, South Africa. Plant Soil 203:183–190CrossRefGoogle Scholar
  20. Fassnacht KS, Gower ST (1999) Comparison of the litterfall and forest floor organic matter and nitrogen dynamics of upland forest ecosystems in north central Wisconsin. Biogeochemistry 45:265–284Google Scholar
  21. Fioretto A, Musacchio A, Andolfi G, Virzo De Santo A (1998) Decomposition dynamics of litters of various pine species in a Corsican pine forest. Soil Biol Biochem 30:721–727CrossRefGoogle Scholar
  22. García-Plé C, Vanrell P, Morey M (1995) Litter fall and decomposition in a Pinus-Halepensis forest on Mallorca. J Veget Sci 6:17–22CrossRefGoogle Scholar
  23. Gholz HL, Wedin DA, Smitherman SM, Harmon ME, Parton WJ (2000) Long-term dynamics of pine and hardwood litter in contrasting environments: toward a global model of decomposition. Global Change Biol 6:751–765CrossRefGoogle Scholar
  24. Gourbière F (1981) Vie, sénescence et décomposition des aiguilles de sapin (Abies alba Mill.). I. Méthodologie et premiers résultats. Acta Oecol-Oec Plant 2:223–232Google Scholar
  25. Jackson RB, Canadell J, Ehleringer JR, Mooney HA, Sala OE, Schulze ED (1996) A global analysis of root distributions for terrestrial biomes. Oecologia 108:389–411CrossRefGoogle Scholar
  26. Jansson PE, Berg B (1985) Temporal variation of litter decomposition in relation to simulated soil climate. Long-term decomposition in a Scots pine forest. Can J Bot 63:1008–1016Google Scholar
  27. Jenkinson DS (1990) The turnover of organic carbon and nitrogen in soil. Phil Trans R Soc London 329:361–368Google Scholar
  28. Karl TR, Knight RW, Kukla G, Plummer N, Razuvayev V, Gallo KP, Lindsay J, Charlson RJ, Peterson TC (1993) A new perspective on recent global warming: asymmetric trends of daily maximum and minimum temperature. Bull Am Meteorol Soc 74:1007–1023CrossRefADSGoogle Scholar
  29. Karl TR, Knight RW, Kukla G, Plummer N (1995) Trends in high frequency climate variability in the twentieth century. Nature 377:217–220CrossRefADSGoogle Scholar
  30. Kätterer T, Reichstein M, Andrén O, Lomander A (1998) Temperature dependence of organic matter decomposition: a critical review using literature data analyzed with different models. Biol Fert Soils 27:258–262CrossRefGoogle Scholar
  31. Kavvadias VA, Alifragis D, Tsiontsis A, Brofas G, Stamatelos G (2001) Litterfall, litter accumulation and litter decomposition rates in four forest ecosystems in Northern Greece. Forest Ecol Manage 144:113–127CrossRefGoogle Scholar
  32. Kendrick WB (1959) The time factor in the decomposition of coniferous leaf litter. Can J Bot 37:907–912CrossRefGoogle Scholar
  33. Kirschbaum MUF, Paul KI (2002) Modelling C and N dynamics in forest soils with a modified version of the CENTURY model. Soil Biol Biochem 34:341–354CrossRefGoogle Scholar
  34. Koide RT, Shumway DL (2000) On variation in forest floor thickness across four red pine plantations in Pennsylvania, USA. Plant Soil 219:57–69CrossRefGoogle Scholar
  35. Kurz C, Coûteaux MM, Thiéry JM (2000) Residence time and decomposition rate of Pinus pinaster needles in a forest floor from direct field measurements under a Mediterranean climate. Soil Biol Biochem 32:1197–1206CrossRefGoogle Scholar
  36. Kurz-Besson C, Coûteaux MM, Thiéry JM, Berg B, Remacle J 2005 A comparison of litterbag and direct observation methods of Scots pine needle decomposition measurement. Soil Biol Biochem 37:2315–2318CrossRefGoogle Scholar
  37. Madeira M, Ribeiro C (1995) Influence of leaf litter type on the chemical evolution of a soil parent material (sandstone). Biogeochemistry 29:43–58CrossRefGoogle Scholar
  38. Mahouff JF, Cariolle D, Royer JF, Geleyn JF, Timbal B (1994) Response of the Météo-France climate model to changes in CO2 and sea surface temperature. Clim Dynam 9:345–362CrossRefADSGoogle Scholar
  39. McTiernan KB (1998) The effect of climate on the decomposition of chemical constituents of tree litters. PhD, University of Lancaster, UK, 175 ppGoogle Scholar
  40. McTiernan KB, Coûteaux MM, Berg B, Berg MP, Calvo de Anta R, Gallardo A, Kratz W, Piussi P, Remacle J, Virzo De Santo A (2003) Changes in chemical composition of Pinus sylvestris needle litter during decomposition along an European coniferous forest climatic transect. Soil Biol Biochem 35:801–812CrossRefGoogle Scholar
  41. Moro MJ, Domingo F (2000) Litter decomposition in four woody species in a Mediterranean climate: weight loss, N and P dynamics. Ann Bot 86:1065–1071CrossRefGoogle Scholar
  42. Parton WJ, Schimel JP, Cole CV, Ojima DS (1987) Analysis of factors controlling soil organic matter levels in great plains grasslands. Soil Sci Soc Am J 51:1173–1179CrossRefGoogle Scholar
  43. Rapp M (1967) Production de litière et apport au sol d’éléments minéraux et d’azote dans un bois de pins d’Alep. Acta Oecol-Oec Plant 2:325–338Google Scholar
  44. Rodrigo A, Recous S, Neel C, Mary B (1997) Modelling temperature and moisture effects on C-N transformations in soils: comparison of nine models. Ecol Model 102:325–339CrossRefGoogle Scholar
  45. Roig S, del Rio M, Canellas I, Montero G (2005) Litter fall in Mediterranean Pinus pinaster Ait. stands under different thinning regimes. Forest Ecol Manage 206:179–190CrossRefGoogle Scholar
  46. Santa Regina IS (2001) Litter fall, decomposition and nutrient release in three semi-arid forests of the Duero basin, Spain. Forestry 74:347–358CrossRefGoogle Scholar
  47. Sharpe DM, Prowse CW (1983) WATERBUD: water budget concepts and applications. Environmental Simulations Laboratory, Carbondale, IL, USAGoogle Scholar
  48. Starr M, Saarsalmi A, Hokkanen T, Merila P, Helmisaari HS (2005) Models of litterfall production for Scots pine (Pinus sylvestris L.) in Finland using stand, site and climate factors. Forest Ecol Manage 205:215–225CrossRefGoogle Scholar
  49. Sun OJ, Campbell J, Law BE, Wolf V (2004) Dynamics of carbon stocks in soils and detritus across chronosequences of different forest types in the Pacific Northwest, USA. Global Change Biol 10:1470–1481CrossRefGoogle Scholar
  50. Thornthwaite CW, Mather JR (1957) Instructions and tables for computing potential evapotranspiration and the water balance. Publ Clim 10:185–311Google Scholar
  51. Virzo De Santo A, Berg B, Rutigliano FA, Alfani A, Fioretto A (1993) Factors regulating early-stage decomposition of needle litters in five different coniferous forests. Soil Biol Biochem 25:1423–1433CrossRefGoogle Scholar
  52. Walse C, Berg B, Sverdrup H (1998) Review and synthesis of experimental data on organic matter decomposition with respect to the effect of temperature, moisture, and acidity. Environ Rev 6:25–40CrossRefGoogle Scholar
  53. Wardle DA, Zackrisson O, Hornberg G, Gallet C (1997) The influence of island area on ecosystem properties. Science 277:1296–1299CrossRefGoogle Scholar
  54. Wardle DA, Nilsson MC, Zackrisson O, Gallet C (2003) Determinants of litter mixing effects in a Swedish boreal forest. Soil Biol Biochem 35:827–835CrossRefGoogle Scholar
  55. Wildung RE, Garland TR, Buschbom RL (1975) The interdependent effects of soil temperature and water content on soil respiration rate and plant root decomposition in arid grassland soils. Soil Biol Biochem 7:373–378CrossRefGoogle Scholar
  56. Yanai RD, Stehman SV, Arthur MA, Prescott CE, Friedland AJ, Siccama TG, Binkley D (2003) Detecting change in forest floor carbon. Soil Sci Soc Am J 67:1583–1593CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2006

Authors and Affiliations

  • C. Kurz-Besson
    • 1
    • 7
  • M. M. Coûteaux
    • 1
  • B. Berg
    • 2
    • 8
  • J. Remacle
    • 3
  • C. Ribeiro
    • 4
  • J. Romanyà
    • 5
  • J. M. Thiéry
    • 6
  1. 1.Centre d’Ecologie Fonctionnelle et EvolutiveC.N.R.S.Montpellier Cedex 05France
  2. 2.Skov og Landskab, KVLHörsholmDenmark
  3. 3.Laboratoire d’Ecologie végétale et microbienneUniversité de LiègeLiègeBelgium
  4. 4.Departamento de Ciências Exactas e do AmbienteEscola Superior Agrária de CoimbraCoimbraPortugal
  5. 5.Departament Productes Natural, Biologia Vegetal i EdafologiaUniversitat de BarcelonaBarcelonaSpain
  6. 6.ModLibre.orgEguillesFrance
  7. 7.Instituto Superior de Agronomia, DBEBLisboaPortugal
  8. 8.Department of Forest EcologyUniversity of HelsinkiHelsinkiFinland

Personalised recommendations