Advertisement

Plant and Soil

, Volume 284, Issue 1–2, pp 109–119 | Cite as

Dynamics of zinc uptake and accumulation in the hyperaccumulating and non-hyperaccumulating ecotypes of Sedum alfredii Hance

  • X. E. Yang
  • T. Q Li
  • X. X. Long
  • Y. H. Xiong
  • Z. L. He
  • P. J. Stoffella
Article

Abstract

Sedum alfredii Hance has been identified as a Zn-hyperaccumulating plant species native to China. The characteristics of Zn uptake and accumulation in the hyperaccumulating ecotype (HE) and non-hyperaccumulating ecotype (NHE) of S. alfredii were investigated under nutrient solution and soil culture conditions. The growth of HE was normal up to 1000 μM Zn in nutrient solution, and 1600 mg Zn kg−1 soil in a Zn-amended soil. Growth of the NHE was inhibited at Zn levels ≥250 μM in nutrient solution. Zinc concentrations in the leaves and stems increased with increasing Zn supply levels, peaking at 500 and 250 μM Zn in nutrient solution for the HE and the NHE, respectively, and then gradually decreased or leveled off with further increase in solution Zn. Minimal increases in root Zn were noted at Zn levels up to 50 μM; root Zn sharply increased at higher Zn supply. The maximum Zn concentration in the shoots of the HE reached 20,000 and 29,000 mg kg−1 in the nutrient solution and soil experiments, respectively, approximately 20 times greater than those of the NHE. Root Zn concentrations were higher in the NHE than in the HE when plants were grown at Zn levels ≥50 μM. The time-course of Zn uptake and accumulation exhibited a hyperbolic saturation curve: a rapid linear increase during the first 6 days in the long-term and 60 min in the short-term studies; followed by a slower increase or leveling off with time. More than 80% of Zn accumulated in the shoots of the HE at half time (day 16) of the long-term uptake in 500 μM Zn, and also at half time (120 min) of the short-term uptake in 10 μM 65Zn2+. These results indicate that Zn uptake and accumulation in the shoots of S. alfredii exhibited a down-regulation by internal Zn accumulated in roots or leaves under both nutrient solution and soil conditions. An altered Zn transport system and increased metal sequestration capacity in the shoot tissues, especially in the stems, may be the factors that allow increased Zn accumulation in the hyperaccumulating ecotype of S. alfredii.

Keywords

concentration-dependent uptake hyperaccumulation Sedum alfredii time-course uptake tolerance zinc 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Assuncão, A G L, Costa Martins, P D A, Foleter, S D E, Vooijs, R, Schat, H, Aarta, M G M 2001Elevated expression of metal transporter genes in three accessions of the metal hyperaccumulator Thlaspi caerulescens Plant Cell Environ.24217226Google Scholar
  2. Assuncão, A G L, Bookum, W M, Nelissen, H J M, Vooijs, R, Schat, H, Ernst, W H O 2003Differential metal-specific tolerance and accumulation patterns among Thlaspi caerulescens populations originating from different soil typesNew Phytol.159411419CrossRefGoogle Scholar
  3. Baker, A J M, McGrath, S P, Reeves, R D, Smith, J A C 2000Metal hyperaccumulator plants: a review of the ecology and physiology resource for phytoremediation of metal-polluted soilsTerry, NBanuelos, GVangronsveld, J eds. Phytoremediation of Contaminated Soil and WaterLewis publishersBoca Raton, FL85107Google Scholar
  4. Becher, M, Talk, I N, Krall, L, Kramer, U 2004Cross-species microarray transcript profiling reveals high constitutive expression of metal homeostasis genes in shoots of the zinc hyperaccumulator Arabidopsis halleri Plant J.37251268PubMedGoogle Scholar
  5. Bert, V, Macnair, M R, Delaguerie, P, Saumitou-Laprade, P, Petit, D 2000Zinc tolerance and accumulation in mrttalicolous and non-metallicolous populations of Arabidopsis halleri (Brassicaceae)New Phytol.146225233CrossRefGoogle Scholar
  6. Bert, V, Macnair, M R, Laguerie, P, Saumitou-laprade, P, Petit, D 2002Do Arabidopsis halleri from non-metallicolous populations accumulate zinc and cadmium more effectively than those from non-mettalicolous populations?New Phytol.1554757CrossRefGoogle Scholar
  7. Brown, S L, Chaney, R L, Angle, J S, Baker, AJM 1995aZinc and cadmium uptake by hyperaccumulator Thlaspi caerulescens and metal tolerant Silene vulgaris grown on sludge-amended soilsEnviron. Sci. Technol.2915811585CrossRefGoogle Scholar
  8. Brown, S L, Chaney, R L, Angle, J S, Baker, AJM 1995bZinc and cadmium uptake by hyperaccumulator Thlaspi caerulescens grown in nutrient solutionSoil Sci. Soc. Am. J.59125133CrossRefGoogle Scholar
  9. Escarri, J, Lefebvre, C, Gruber, W, Leblanc, M, Lepart, J, Riviere, Y, Delay, B 2000Zinc and cadmium hyperaccumulation by Thlaspi caerulescens from metalliferous and non-metalliferous sites in the Mediterranean area: implications for phytoremediationNew Phytol.145429437CrossRefGoogle Scholar
  10. Kochian, L V 1991Mechanisms of micronutrient uptake and translocation in plantsMortvedt, J J eds. Micronutrients in AgricultureSoil Science Society of AmericaMadison, WI229296Google Scholar
  11. Kochian, L V 1993 Zinc absorption from hydroponic solutions by plant rootsRobson, A D eds. Zinc in Soil and PlantsKluwer Academic PublishersDordrecht, The Netherlands4557 Google Scholar
  12. Küpper, H, Lombi, E, Zhao, F J, McGrath, S P 2000Cellular compartmentation of cadmium and zinc in relation to other elements in the hyperaccumulator Arabidopsis haller Planta2127584PubMedCrossRefGoogle Scholar
  13. Lasat, M M, Baker, A J, Kochian, M 1996Physoilogical characterisation of root Zn2+ absorption and translocation to shoots in hyperaccumulator and non-hyperaccumulator species of Thlaspi Plant Physiol.11217151722PubMedGoogle Scholar
  14. Lasat, M M, Baker, A J M, Kochian, L V 1998Altered Zn compartmentation in the root ymplasm and stimulated Zn absorption into the leaf as mechanisms involved in Zn hyperaccumulation in Thlaspi caerulescens Plant Physiol.118875883PubMedCrossRefGoogle Scholar
  15. Li, T Q, Yang, X E, He, Z L, Yang, J Y 2005Root morphology and Zn2+ uptake kinetics of the Zn hyperaccumulator of Sedum alfredii HanceJ. Intergrative Plant Biol.47927934CrossRefGoogle Scholar
  16. Long, X X, Yang, X E, Ye, Z Q, Ni, W Z 2002Study of the differences of uptake and accumulation of zinc in four species of Sedum Acta Bot. Sin.44152157Google Scholar
  17. Meerts, P, Isacker, N 1997Heavy metal tolerance and accumulation in metallicolous and non-metallicolous populations of Thlaspi caerulescens from continental EuropePlant Ecol.133221231CrossRefGoogle Scholar
  18. Ni, W Z, Yang, X E, Long, X X 2004Comparative studies on zinc tolerance and accumulation between two ecotypes of Sedum alfrediii Hance in Southeast ChinaJ. Plant Nutr.27627635CrossRefGoogle Scholar
  19. Pence, S N, Larsen, P B, Ebbs, S D, Letham, D L D, Lasat, M M, Garvin, D F, Eide, D, Kochian, L V 2000The molecular physiology of heavy metal transport in the Zn/Cd hyperaccumulator Thlaspi caerulescens Proc. Nat. Acad. Sci. USA9749564960PubMedCrossRefGoogle Scholar
  20. Salt, D E, Smith, R D, Raskin, I 1998PhytoremediationAnn. Rev. Plant Physiol. Plant Mol. Biol.49643668CrossRefGoogle Scholar
  21. Santa Maria, G E, Cogliatti, D H 1988Bidirectional Zn-fluxes and compartmentation in wheat seedling rootsJ. Plant Physiol.132312315Google Scholar
  22. Veltrup, W 1978Characteristics of zinc uptake by barley rootsPhysiol. Plant.42190194CrossRefGoogle Scholar
  23. Weber, M, Harada, E, Vess, C, Roepenack-Lahaya, E, Clemens, S 2004Comparative microarray analysis of Arabidopsis thaliana and Arabidopsis halleri roots identifies nicotianamine synthase, a ZIP transporter and other genes as potential metal hyperaccumulation factorsPlant J.37269281PubMedCrossRefGoogle Scholar
  24. Yang, X E, Baligar, V C, Martens, D C, Clark, R B 1996Cadmium effects on influx and transport of mineral nutrients in plant speciesJ. Plant Nutri.19643656CrossRefGoogle Scholar
  25. Yang, X E, Long, X X, N i, W Z 2001Zinc tolerance and hyperaccumulation in a new ecotype of Sedum alfredii HanceActa Phytoecol. Sin.25670677Google Scholar
  26. Yang, X E, Long, X X, Ni, W Z 2002Sedum alfredii Hance – a new ecotype of Zn-hyperaccumulator plant species native to ChinaChin. Sci. Bull.4710031006CrossRefGoogle Scholar
  27. Yang, X E, Ye, H B, Long, X X, He, B, He, Z L, Stoffella, P J, Calvert, D V 2004Uptake and accumulation of cadmium and zinc by Sedum alfredii Hance at different Cd/Zn supply levelsJ. Plant Nutri.2719631977CrossRefGoogle Scholar
  28. Zhao, F J, Lombi, E, Breedon, T, McGrath, S P 2000Zinc hyperaccumulation and cellular distribution in Arabidopsis halleriPlant Cell Environ.23507514CrossRefGoogle Scholar
  29. Zhao, F J, Dunham, S J, McGrath, S P 2002Arsenic hyperaccumulation by different fern speciesNew Phytol.1562731CrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • X. E. Yang
    • 1
  • T. Q Li
    • 1
  • X. X. Long
    • 1
  • Y. H. Xiong
    • 1
  • Z. L. He
    • 2
  • P. J. Stoffella
    • 2
  1. 1.MOE Key Lab of Environmental Remediation and Ecological Health, College of Natural Resources and Environmental ScienceZhejiang UniversityHangzhouChina
  2. 2.IFAS, Indian River Research & Education CenterUniversity of FloridaFort PierceUSA

Personalised recommendations