Advertisement

Plant and Soil

, Volume 277, Issue 1–2, pp 315–333 | Cite as

Decomposition and Mineralization of Organic Residues Predicted Using Near Infrared Spectroscopy

  • K. D. Shepherd
  • B. Vanlauwe
  • C. N. Gachengo
  • C. A. Palm
Article

Abstract

Characterization of decomposition characteristics is important for sound management of organic residues for both soils and livestock, but routine residue quality analysis is hindered by slow and costly laboratory methods. This study tested the accuracy and repeatability of near-infrared spectroscopy (NIR) for direct prediction of in vitro dry matter digestibility (IVDMD) and C and N mineralization for a diverse range of organic materials (mostly crop and tree residues) of varying quality (n = 32). The residue samples were aerobically incubated in a sandy soil and amounts of C and N mineralized determined after 28 days. IVDMD and quality attributes were determined using wet chemistry methods. Repeatability was higher with NIR than the original wet chemistry methods: on average NIR halved the measurement standard deviation. NIR predicted IVDMD and C and N mineralization more accurately than models based on wet chemical analysis of residue quality attributes: reduction in root mean square error of prediction with NIR, compared with using quality attributes, was IVDMD, 6%; C mineralization after 28 days, 8%; and N mineralization after 28 days, 8%. Cross-validated r 2 values for measured wet chemistry vs. NIR-predicted values were: IVDMD, 0.88; C mineralization, 0.82; and N mineralization, 0.87. Direct prediction of decomposition and mineralization from NIR is faster, more accurate and more repeatable than prediction from residue quality attributes determined using wet chemistry. Further research should be directed towards establishment of diverse NIR calibration libraries under controlled conditions and direct calibration of soil quality, crop and livestock responses in the field to NIR characteristics of residues.

Keywords

accuracy and repeatability decomposition dry matter digestibility near-infrared spectroscopy nitrogen mineralization organic residue quality 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aastveit, A H, Marum, P 1991On the effect of calibration and the accuracy of NIR spectroscopy with high levels of noise in the reference valuesAppl. Spectrosc.45109115CrossRefGoogle Scholar
  2. Ågren, G I, Bosatta, E 1996Quality: a bridge between theory and experiment in soil organic matter studiesOikos76522528Google Scholar
  3. Analytical Spectral Devices Inc. 1997 FieldSpecTM User’s Guide. Analytical Spectral Devices Inc Boulder CO, USA. 81 ppGoogle Scholar
  4. Box, G E P, Cox, D R 1964An analysis of transformations (with discussion)J. R. Stat. Soc. B26211250Google Scholar
  5. Bruun S, Stenberg B, Breland T A, Gudmundsson J, Henriksen T M, Jensen L S, Kosraeth A, Luxhøi J, Pálmason F, Pedersen A, Salo T 2005 Empirical prediction of plant material C and N mineralization patterns from near infrared spectroscopy, stepwise chemical digestion and C/N ratios. Soil Biol. Biochem., in pressGoogle Scholar
  6. Cochran, W G 1977Sampling TechniquesThird Edition.WileyNew YorkGoogle Scholar
  7. Edwards, D 2000Introduction to Graphical ModellingSpringer-VerlagNew York333Google Scholar
  8. Fearn, T 2000Savitzky-Golay filtersNIR News111415Google Scholar
  9. Giller, K E, Cadisch, G 1997 1997 Driven by nature: a sense of arrival or departureCadisch, GGiller, K E eds. Driven by Nature: Plant Litter Quality and DecompositionCAB InternationalWallingford, UK393399Google Scholar
  10. Gillon, D, Joffre, R, Dardenne, P 1993Predicting the stage of decay of decomposing leaves by near infrared reflectance spectroscopyCan. J. For. Res.2325522559Google Scholar
  11. Gillon, D, Joffre, R, Ibrahima, A 1999Can litter decomposability be predicted by near infrared reflectance spectroscopy?Ecology80175186Google Scholar
  12. Heal, O W, Anderson, J E, Swift, M J 1997 Plant litter quality and decomposition: an historical overviewCadisch, GGiller, K E eds. Driven by Nature: Plant Litter Quality and DecompositionCAB InternationalWallingford, UK330Google Scholar
  13. Jensen, L S, Salo, T, Palmson, F, Breland, T A, Henriksen, T M, Stenberg, B, Pedersen, A, Lundström, C, Esala, M 2005Influence of biochemical quality on C and N mineralization from a broad variety of plant material in soilPlant Soil273307326CrossRefGoogle Scholar
  14. Joffre, R, Gillon, D, Dardenne, P, Agneessens, R, Biston, R 1992The use of near-infrared reflectance spectroscopy in litter decomposition studiesAnn. Sci. For.49481488Google Scholar
  15. Joffre, R, Ågren, G I, Bosatta, E 2001Organic matter quality in ecological studies: theory meets experimentOikos93451458CrossRefGoogle Scholar
  16. Malley, D F, Yesmin, L, Eilers, R G 2002Rapid analysis of hog manure and manure-amended soils using near-infrared spectroscopySoil Sci. Soc. Am. J.6616771686CrossRefGoogle Scholar
  17. Martens, H, Martens, M 2000Modified jack-knife of parameter uncertainty in bilinear modelling by partial least squares regression (PLSR)Food Qual. Pref.11516Google Scholar
  18. Martens, H, Naes, T 1989Multivariate CalibrationWileyChichester, UK438Google Scholar
  19. Naes, T, Isaksson, T, Fearn, T, Davies, T 2002A User-friendly Guide to Multivariate Calibration and ClassificationNIR PublicationsChichester, UK344Google Scholar
  20. Palm, C A, Gachengo, C N, Delve, R J, Cadisch, G, Giller, K E 2001Organic inputs for soil fertility management in tropical agroecosystems: application of a residue databaseAgric. Ecosyst. Environ.832742Google Scholar
  21. Pinheiro, J C, Bates, D M 2000Mixed-Effects Models in S and S-PlusSpringer-VerlagNew YorkGoogle Scholar
  22. Reeves,  J B, Kessel, J A S 2002Spectroscopic analysis of dried manures. Near- versus mid-infrared diffuse reflectance spectroscopy for the analysis of dried dairy manuresJ. Near Infrared Spectrosc.1093101Google Scholar
  23. Roberts, C A, Stuth, J, Flinn, P 2004 Analysis of forages and feedstuffsRoberts, C AWorkman, J,JrReeves, J B eds. Near-Infrared Spectroscopy in AgricultureAmerican Society of AgronomyMadison, USA231267Google Scholar
  24. Shenk, J S, Workman, J J,Jr, Westerhaus, M O 2001 Application of NIR spectroscopy to agricultural productsBurns, D ACiurczak, E W eds. Handbook of Near-Infrared AnalysisMarcel Dekker, IncNew York419474Google Scholar
  25. Shepherd, K D, Walsh, M G 2002Development of reflectance spectral libraries for characterization of soil propertiesSoil Sci. Soc. Am. J.66988998CrossRefGoogle Scholar
  26. Shepherd, K D, Palm, C A, Gachengo, C N, Vanlauwe, B 2003Rapid characterization of residue quality for soil and livestock management in tropical agroecosystems using near infrared spectroscopyAgron. J.9513141322CrossRefGoogle Scholar
  27. Sørensen, L K 2002True accuracy of near infrared spectroscopy and its dependence on precision of reference dataJ. Near Infrared Spectrosc.101525Google Scholar
  28. Stenberg, B, Jensen, L S, Nordkvist, E, Breland, T A, Pedersen, A, Guomundsson, J, Bruun, S, Salo, T, Palmason, F, Henriksen, T M, Korsaeth, A 2004Near infrared reflectance spectroscopy for quantification of crop residue, green manure and catch crop C and N fractions governing decomposition dynamics in soilJ. Near Infrared Spectrosc.12331346Google Scholar
  29. ginste, B M G, Massart, D L, Buydens, L M C, Jong, S, Lewi, P J, Smeyers-Verbeke, J 1998 Handbook of Chemometrics and Qualimetrics: Part B. Data Handling in Science and Technology – Volume 20BElsevierAmsterdam713Google Scholar
  30. lauwe, B, Gachengo, C, Shepherd, KD, Barrios, E, Cadisch, G, Palm, CA 2005Validation of a resource quality-based conceptual framework for organic matter managementSoil Sci. Soc. Am. J.6911351145Google Scholar
  31. Williams, P C, Norris, K 2001Variables affecting near-infrared spectroscopic analysisWilliams, PNorris, K eds. Near-Infrared Technology in the Agricultural and Food IndustriesAmerican Association of Cereal Chemists, St. PaulMinnesota171185Google Scholar
  32. Workman, J,Jr, Shenk, J 2004Understanding and using the near-infrared spectrum and as an analytical methodRoberts, C AWorkman, J,JrReeves, J B eds. Near-Infrared Spectroscopy in AgricultureAmerican Society of AgronomyMadison, USA310Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • K. D. Shepherd
    • 1
  • B. Vanlauwe
    • 2
  • C. N. Gachengo
    • 2
  • C. A. Palm
    • 3
  1. 1.World Agroforestry Centre (ICRAF)NairobiKenya
  2. 2.Tropical Soil Biology and Fertility Institute of CIAT (TSBF-CIAT)NairobiKenya
  3. 3.The Earth Institute at Columbia UniversityPalisadesUSA

Personalised recommendations