Plant and Soil

, Volume 277, Issue 1–2, pp 245–253 | Cite as

Contribution of Ectomycorrhizal Fungi to Cadmium Uptake of Poplars and Willows from a Heavily Polluted Soil

  • Joachim Sell
  • Achim Kayser
  • Rainer Schulin
  • Ivano Brunner
Article

Abstract

Phytoextraction has been proposed in recent years as an environmentally and cost-efficient treatment technique for the remediation of heavy-metal contaminated sites. In particular, plants that are fast growing, metal accumulating, and economically interesting, such as sunflowers or trees, recently became more important in research on phytoextraction. Heavy metal uptake of trees can be strongly influenced by ectomycorrhizal fungi. We investigated the possibility of enhancing phytoextraction of Cd by willows (Salix viminalis) and poplars (Populus canadensis) in association with three well known ectomycorrhizal fungi (Hebeloma crustuliniforme, Paxillus involutus and Pisolithus tinctorius). A pot experiment was conducted using Cd polluted soil from a contaminated site. Four replicates of each combination of fungus and tree species, and controls without fungal inoculum, were set up. After a growth period of 11 weeks, yields and Cd concentrations in roots, stems, and leaves were measured. In addition, the total Cd uptake, the transfer to roots, and the translocation to stems and leaves were calculated. The association of P. canadensis with P. involutus led to a highly significant increase of Cd concentrations, in particular in the leaves, which contained 2.74 ± 0.34 mg Cd per kg dry matter. Compared to the control this is an enhancement of nearly 100%. The fungi also significantly enhanced the translocation from the roots to the leaves, leading to a concentration ratio (leaves/roots) of 0.32 ± 0.06 compared to 0.20 ± 0.02 of the control plants. Additionally, P. involutus significantly enhanced the total Cd extraction by P. canadensis. Similar effects were not observed by other fungi or in association with S. viminalis.

Keywords

cadmium ectomycorrhiza Paxillus involutus phytoremediation Populus canadensis Salix viminalis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen M F 1991 The Ecology of Mycorrhizae. Cambrige University Press. 196 pGoogle Scholar
  2. Baker, A J M, Walker, P L 1990

    Ecophysiology of metal uptake by tolerant plants

    Shaw, A J eds. Heavy Metal Tolerance in Plants: Evolutionary AspectsCRC PressBoca Raton155177
    Google Scholar
  3. Berthelsen, B, Olsen, R A, Steinnes, E 1995Ectomycorrhizal heavy metal accumulation as a contributing factor to heavy metal levels in organic surface soilsSci. Tot. Environ.170141149Google Scholar
  4. Beyrle, H 1995

    The role of phytohormones in the function and biology of mycorrhizas

    Varma, AHock, B eds. Mycorrhiza (Structure, Function, Molecular Biology and Biotechnology)SpringerBerlin365390
    Google Scholar
  5. Bücking, H, Heyser, W 1994The effect of ectomycorrhizal fungi on Zn uptake and distribution in seedlings of Pinus sylvestris LPlant Soil.167203212CrossRefGoogle Scholar
  6. Colpaert, J V, Assche, J A 1987Heavy metal tolerance in some ectomycorrhizal fungiFunct. Ecol.1415421Google Scholar
  7. Colpaert, J V, Assche, J A 1992Zink toxicity in ectomycorrhizal Pinus sylvestrisPlant Soil143201211CrossRefGoogle Scholar
  8. ETCS 1998 Topic Report – Contaminated sites. pp 142. European Environmental AgencyGoogle Scholar
  9. FAC 1989 Methoden für die Bodenuntersuchungen. Schriftenreihe der FAC 5. Eidgenössische Forschungsanstalt für Agrikulturchemie und Umwelthygiene, Liebefeld, Bern 267 pp.Google Scholar
  10. Godbold, D L 1994

    Aluminum and heavy metal stress: From the rhizosphere to the whole plant

    Godbold, D LHüttermann, A eds. Effects of Acid Rain on Forest ProcessesWiley-LissNew York231264
    Google Scholar
  11. Godbold, D L, Jentschke, G, Winter, S, Marschner, P 1998Ectomycorrhizas and amelioration of metal stress in forest treesChemosphere36757762Google Scholar
  12. Greger, M 1999

    Metal availability and bioconcentration in plants

    Prasad, M N VHagemeyer, J eds. Heavy Metal Stress in PlantsSpringerBerlin127
    Google Scholar
  13. Hämmann, M, Gupta, S K 1997Herleitung von Prüf- und Sanierungswerten für anorganische Schadstoffe im Boden. Umweltmaterialien 83BUWALBern100Google Scholar
  14. Hammer, D, Kayser, A, Keller, C 2003Phytoextraction of Cd and Zn with Salix viminalis in field trialsSoil Use Manage.19187192Google Scholar
  15. Hartley, J, Cairney, J W G, Meharg, A A 1997Do ectomycorrhizal fungi exhibit adaptive tolerance to potentially toxic metals in the environment?Plant Soil189303319CrossRefGoogle Scholar
  16. Haselwandter, K, Bowen, G D 1996Mycorrhizal relations in trees for agroforestry and land rehabilitationForest Ecol. Manag.81117Google Scholar
  17. Heslin, M C, Douglas, G C 1986Synthesis of poplar mycorrhizasT. Brit. Mycol. Sol.86117122Google Scholar
  18. Hesske, S, Schärli, M, Tietje, O, Scholz, R W 1998Zum Umgang mit Schwermetallen im Boden: Falldossier DornachPabst Science PublisherLengerich, Germany145Google Scholar
  19. Jentschke, G, Godbold, D L 2000Metal toxicity and ectomycorrhizasPhysiol. Plantarum109107116Google Scholar
  20. Jones, M D, Durall, D M, Tinker, P B 1990Phosphorus relations and production of extramatrical hyphae by two types of willow ectomycorrhizas at different soil phosphorus levelsNew Phytol.115259267Google Scholar
  21. Jones, M D, Hutchinson, T C 1988Nickel toxicity in mycorrhizal birch seedlings infected with Lactaria rufus or Scleroderma flavidumNew. Phytol.108451459Google Scholar
  22. Kayser, A, Schröder, T J, Grünwald, A, Schulin, R 2001Solubilization and plant uptake of zinc and cadmium from soils treated with elemental sulphurInt. J. Phytorem.3381400Google Scholar
  23. Kayser, A, Wenger, K, Keller, A, Attinger, W, Felix, H R, Gupta, S K, Schulin, R 2000Enhancement of phytoextraction of Zn, Cd, and Cu from calcareous soil: the use of NTA and sulfur amendmentsEnviron. Sci. Technol.3417781783CrossRefGoogle Scholar
  24. Keller, C, Hammer, D, Kayser, A, Richner, W, Brodbeck, M, Sennhauser, M 2003Root development and heavy metal phytoextraction efficiency: comparison of different plant species in the fieldPlant Soil2496781CrossRefGoogle Scholar
  25. Lapeyrie, F, Chilvers, G A, Bhem, C A 1987Oxalic acid synthesis by the mycorrhizal fungus Paxillus involutus (Batsch. Ex Fr.) FrNew. Phytol.106139146Google Scholar
  26. Lapeyrie, F, Ranger, J, Vairelles, D 1991Phosphate-solubilizing activity of ectomycorrhizal fungi in vitroCan. J. Bot69342346Google Scholar
  27. Leyval, C, Surtiningsih, T, Berthelin, J 1993Mobilization of Cd from rock phosphates by rhizospheric microorganismsPhosphorus Sulfur77133136Google Scholar
  28. Leyval, C, Turnau, K, Haselwandter, K 1997Effect of heavy metal pollution on mycorrhizal colonization and function: physiological, ecological and applied aspectsMycorrhiza7139153CrossRefGoogle Scholar
  29. Loree, M A J, Lumme, I, Niemi, M, Tormala, T 1989Inoculation of Salix spp. with ectomycorrhizal fungi on mined boreal peatlandPlant Soil116229238CrossRefGoogle Scholar
  30. Marx, D H, Bryan, W C 1975Growth and ectomycorrhizal development of loblolly pine seedlings in fumigated soil infested with the fungal symbiont Pisolithus tinctoriusFor. Sci.21245254Google Scholar
  31. McGrath, S P, Zhao, F J, Lombi, E 2001Plant and rhizosphere processes involved in phytoremediation of metal-contaminated soilsPlant Soil232207214CrossRefGoogle Scholar
  32. McIntyre, T 2003Phytoremediation of heavy metals from soilsAdv. Biochem. Engin/Biotechnol.7897123Google Scholar
  33. Meers, E, Hopgood, M, Lesage, E, Vervaeke, P, Tack, F M G, Verloo, M G 2004Enhanced phytoextraction: in search of EDTA alternativesInt. J. Phytorem.695109Google Scholar
  34. Prasad, M N V, Oliveira Freitas, H M 2003Metal hyperaccumulation in plants - biodiversity prospecting for phytoremediation technologyEctr. J. Biotechnol.6285321Google Scholar
  35. Püttsepp, Ü, Rosling, A, Taylor, A F S 2004Ectomycorrhizal fungal communities associated with Salix viminalis L. and S. dasyclados Wimm. clones in a short-rotation forestry plantationForest Ecol. Manag.196413424Google Scholar
  36. Robinson, B H, Mills, T M, Petit, D, Fung, L E, Green, S R, Clothier, B E 2000Natural and induced cadmium-accumulation in poplar and willow: implications for phytoremediationPlant Soil227301306CrossRefGoogle Scholar
  37. Rockwood, D L, Naidu, C V, Carter, D R, Rahmani, M, Spriggs, T A, Lin, C, Alker, G R, Isebrands, J G, Segrest, S A 2004Short-rotation wood crops and phytoremediation: opportunities for agroforestry?Agroforest. Syst.615163CrossRefGoogle Scholar
  38. Salzer, P, Hager, A 1993Effects of auxins and ectomycorrhizal elicitors on wall-bound proteins and enzymes of spruce cellsTrees84955Google Scholar
  39. Saxena, P K, KrishnaRaj, S, Dan, T, Perras, M R, Vettakkorumakankav, N N 1999

    Phytoremediation of heavy metal contaminated and polluted soils

    Prasad, M N VHagemeyer, J eds. Heavy Metal Stress in PlantsSpringerBerlin305329
    Google Scholar
  40. Schulin R, Zeyer J, Gupta S and Gälli R 1997 Problem substanzen im Boden und Sanfte Bodensanierung. TerraTech 2+3, 4–5Google Scholar
  41. Smith S E and Read D J 1997 Mycorrhizal Symbiosis. Academic PressGoogle Scholar
  42. Tam, P C F 1995Heavy metal tolerance by ectomycorrhizal fungi and metal amelioration by Pisolithus tinctoriusMycorrhiza5181187CrossRefGoogle Scholar
  43. Turnau K, Dexheimer J and Botton B 1995 Heavy metal sequestration and filtering effect in selected mycorrhizas from calamine dumps - EDAX microanalysis. In Proceedings of 10th international conference on heavy metals in the environment, Hamburg, 1995. pp. 317–320Google Scholar
  44. Turner, A P 1994

    The responses of plants to heavy metals

    Ross, S M eds. Toxic Metals in Soil-Plant SystemsJohn Wiley & Sons LtdChichester, UK152187
    Google Scholar
  45. Vogel, H, Desaules, A, Häni, H 1989Schwermetallgehalte in den Böden der Schweiz. National Research Programme 22Bern-LiebefeldSwitzerland118Google Scholar
  46. Wallenda, T, Kottke, I 1998Nitrogen deposition and ectomycorrhizasNew Phytol.139169187CrossRefGoogle Scholar
  47. Wenger, K, Kayser, A, Gupta, S K, Furrer, G, Schulin, R 2002comparison of NTA and elemental sulfur as potential soil amendments in phytoremediationSoil Sediment Contam.11655672Google Scholar
  48. Wilkinson, D M, Dickinson, N M 1995Metal resistance in trees: The role of mycorrhizaeOIKOS722Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Joachim Sell
    • 1
  • Achim Kayser
    • 2
  • Rainer Schulin
    • 2
  • Ivano Brunner
    • 3
  1. 1.Chair of Natural and Social Science Interface (NSSI)Swiss Federal Institute of Technology Zurich, ETH Zentrum HADZurichSwitzerland
  2. 2.Institute of Terrestrial Ecology (ITÖ)Swiss Federal Institute of Technology, ZurichSchlierenSwitzerland
  3. 3.Swiss Federal Institute for Forest, Snow and Landscape Research (WSL)BirmensdorfSwitzerland

Personalised recommendations