Plant and Soil

, Volume 276, Issue 1–2, pp 369–382 | Cite as

Genetic Analysis of Maize Root Characteristics in Response to Low Nitrogen Stress

  • Liang Chun
  • Guohua Mi
  • Jiansheng Li
  • Fanjun Chen
  • Fusuo Zhang


Under low-input cropping systems, nitrogen (N) can be a limiting factor in plant growth and yield. Identifying genotypes that are more efficient at capturing limited N resources and the traits and mechanisms responsible for this ability is important. Root trait has a substantial influence on N acquisition from soils. Nevertheless, inconsistencies still exist as to the effect of low N on root length and its architecture in terms of lateral and axial roots. For maize, a crop utilizing heterosis, little is known about the relationship between parents and their crosses in the response of root architecture to N availability. Here 7 inbred maize lines and 21 of their crosses created by diallel mating were used to study the effect of N stress on root morphology as well as the relationship between the inbreds and their crosses. With large genotypic differences, low N generally suppresses shoot growth and increases the root to shoot ratio with or without increasing root biomass in maize. Maize plants responded to N deficiency by increasing total root length and altering root architecture by increasing the elongation of individual axial roots and enhancing lateral root growth, but with a reduction in the number of axial roots. Here, the inbreds showed weaker responses in root biomass and other root parameters than their crosses. Heterosis of root traits was significant at both N levels and was attributed to both the general combining ability (GCA) and special combining ability (SCA). Low N had substantial affects on the pattern of heterosis, GCA and SCA affects on root traits for each of the crosses suggesting that selection under N stress is necessary in generating low N-tolerant maize genotypes.


GCA maize (Zea Mays L.) nitrogen root morphology SCA 



average length of axial root


axial root


lateral root


ratio of lateral to axial root length


number of axial root


root/shoot ratio


total length of axial root


total length of lateral root


total root length


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Balko, L G, Russell, W A 1980Effect of rates of nitrogen fertilizer con maize inbred lines and hybrid progeny. II. Correlations among agronomic traitsMaydica258194Google Scholar
  2. Bänziger, M, Edmeades, G O, Lafitte, H R 1999Selection for drought tolerance increases maize yields across a range of nitrogen levelsCrop Sci.3910351040CrossRefGoogle Scholar
  3. Bänziger, M, Lafitte, H R 1997Efficiency of secondary traits for improving maize for low-nitrogen target environmentsCrop Sci.3711101117Google Scholar
  4. Betrán, F J, Beck, D, Bänziger, M, Edmeades, G O 2003Genetic analysis of inbred and hybfid grain yield under stress and nonstress environments in tropical maizeCrop Sci.43 807817Google Scholar
  5. Costa, C, Dwyer, L M, Zhou, X, Dutilleul, P, Hamel, C, Reid, L M, Smith, D L 2002Root morphology of contrasting maize genotypesAgron. J.9496101CrossRefGoogle Scholar
  6. Crow, J F 199890 years ago: the beginning of hybrid maizeGenetics148923928PubMedGoogle Scholar
  7. Eghball, B, Maranville, J W 1993Root development and nitrogen influx of corn genotypes grown under combined drought and N stressAgron. J.85147152Google Scholar
  8. Feil, B, Thiraporn, R, Geisler, G, Stamp, P 1990Root traits of maize seedlings-indicators of nitrogen efficiency?Plant Soil123155159CrossRefGoogle Scholar
  9. Griffing, B 1956Concept of general and specific combining ability in relation to diallel crossing systemAust. J. Boil. Sci.9463493Google Scholar
  10. Hebert, Y, Barriere, Y, Bertholeau, J C 1992Root lodging resistance in forage maize: genetic variability of root system and aerial partMaydica37173183Google Scholar
  11. Horst, WJ, Behrens, T, Heuberger, H, Kamh, M, Reidenbach, G, Wiesler, F 2003Genotypic differences in nitrogen use-efficiency in crop plantsLynch, J MSchepers, J SÜnver, I eds. Innovative Soil–Plant Systems for Sustainable Agricultural ProductionOECD 7592Google Scholar
  12. Jenison, J R, Shank, D B, Penny, L H 1981Root characteristics of 44 maize inbreds evaluated in four environmentsCrop Sci.21233237CrossRefGoogle Scholar
  13. Jordan, W R, Douglas, P R, Shouse, P J 1983Strategies for crop improvement for drought-prone regionsAgr. Water Manage.7281199Google Scholar
  14. Katsantonis, N, Gagianas, A, Fotiadis, N 1988Genetic control of nitrogen uptake, reduction and partitioning in maize (Zea mays L.)Maydica3399108Google Scholar
  15. Lafitte, H R, Edmeades, G O 1995Association between traits of tropical maize inbred olines nad their hybrids under high and low soil nitrogenMaydica40259267Google Scholar
  16. Landi, P, Albrecht, b, Giuliani, M M, Sanguineti, M C 1998Seedling characteristics in hydroponic culture and field performance of maize genotypes with different resistance to root lodgingMaydica43111116Google Scholar
  17. Linkohr, B I, Williamson, L C, Fitter, A H, Leyser, H M O 2002Nitrate and phosphate availability and distribution have different effects on root system architecture of Arabidopsis Plant J.29751760CrossRefPubMedGoogle Scholar
  18. Liu, Y, Mi, G, Chen, F, Zhang, J, Zhang, F 2004Rhizosphere effect and root growth of two maize (Zea mays L.) genotypes with contrasting P efficiency at low P availabilityPlant Sci. 167217223Google Scholar
  19. Lynch, J P 1995Root architecture and plant productivityPlant Physiol.109713PubMedGoogle Scholar
  20. Mackay, A D, Barber, S A 1986Effects of nitrogen on root growth of two corn genotypes in the fieldAgron. J.78699703CrossRefGoogle Scholar
  21. Maizlish, N A, Fritton, D D, Kendall, W A 1980Root morphology and early development of maize at varying levels of nitrogenAgron. J.72531CrossRefGoogle Scholar
  22. Presterl, T, Seitz, G, Landbeck, M, Thiemt, E M, Schmidt, W, Geiger, H H 2003Improving nitrogen-use efficiency in European maize: estimation of quantitative genetic parametersCrop Sci.4312591265Google Scholar
  23. Rizzi, E, Balconi, C, Nembrini, L, Stefanini, F M, Coppolino, F, Motto, M 1993Genetic variation and relationships among N-related traits in maizeMaydica382330Google Scholar
  24. Romagnoli, S, Maddaloni, M, Livini, C, Motto, M 1990Relationship between gene expression and hybrid vigor in primary root tips of young maize (Zea mays L.) plantletsTheor. Appl. Genet.80767775CrossRefGoogle Scholar
  25. SAS Institute Inc. 1989 SAS/STAT user’ guide, Version 6. 4th ed. Vols. 1 and 2. SAS Institute Inc. Cary NC USAGoogle Scholar
  26. Sattelmacher, B, Klotz, F, Marschner, H 1990Influence of the nitrogen level on root growth and morphology of two potato varieties differing in nitrogen acquisitionPlant Soil123131137CrossRefGoogle Scholar
  27. Tuberosa, R, Salvi, S, Sanguineti, M C, Maccaferri, M, Giuliani, S, Landi, P 2003Searching for quantitative trait loci controlling root traits in maize: a critical aporaisalPlant Soil2553554CrossRefGoogle Scholar
  28. Vamerali, T, Saccomani, M, Bona, S, Mosca, G, Guarise, M, Ganis, A 2003A comparison of root characteristics in relation to nutrient and water stress in two maize hybridsPlant Soil255157167Google Scholar
  29. van Beem J, Smith M E 1996 Variation in nitrogen use efficiency and root system size in temperate maize genotypes. In Developing drought and low N-tolerant maize, Proceedings of a Symposium, March 25–29, 1996. Eds. G O Edmeades, M Bänziger, H R Mickelson, C B Pena-Valdivia. pp. 241–244. CIMMYTGoogle Scholar
  30. Wang, R, Guegler, K, LaBrie, S T, Crawford., N M 2000Genomic analysis of a nutrient response in Arabidopsis reveals diverse expression patterns and novel metabolic and potential regulatory genes induced by nitratePlant Cell1214911509PubMedGoogle Scholar
  31. Wang, Y-H, Garvin, D F, Kochian, L V 2001Nitrate-induced genes in tomato roots. Array analysis reveals novel genes that may play a role in nitrogen nutritionPlant Physiol.127345359PubMedGoogle Scholar
  32. Wang, Y, Mi, G, Chen, F, Zhang, J, Zhang, F 2004Response of root morphology to nitrate supply and its contribution to nitrogen accumulation in maizeJ. Plant Nutr.2721892202Google Scholar
  33. Zaidi, PH, Srinivasan, G, Sanchez, C 2003Relationship between line per se and cross performance under low nitrogen fertility in tropical maize (Zea mays L.)Maydica48221231Google Scholar
  34. Zhang, H, Jennings, A, Barlow, P W, Forde, B G 1999Dual pathways for regulation of root branching by nitratePNAS96 65296534PubMedGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Liang Chun
    • 1
  • Guohua Mi
    • 1
  • Jiansheng Li
    • 2
  • Fanjun Chen
    • 1
  • Fusuo Zhang
    • 1
  1. 1.Key Lab of Plant–Soil InteractionCollege of Resources and Environmental SciencesP R China
  2. 2.College of Agronomy and BiotechniqueChina Agricultural UniversityBeijingPR China

Personalised recommendations