Advertisement

Plant and Soil

, Volume 279, Issue 1–2, pp 41–50 | Cite as

Stress Responses of Zea mays to Cadmium and Mercury

  • Rubén Rellán-Álvarez
  • Cristina Ortega-Villasante
  • Ana Álvarez-Fernández
  • Francisca F. del Campo
  • Luis E. Hernández
Article

Abstract

A hydroponic experiment was carried out to characterize the oxidative stress responses of maize seedlings (Zea mays L. cv. Dekalb DK604) to cadmium (Cd) and mercury (Hg). Plants were grown hydroponically for 7 days in a nutrient solution supplemented with several concentrations of Cd and Hg: 0.0 (control), 6 or 30 μM. Growth was inhibited by both metals. The effect was more severe in plants exposed to Hg. Oxidative stress was caused by the exposure to the metals, as quantified by malondialdehyde and carbonyl accumulation, by-products of lipid peroxidation and protein oxidation, respectively. The activity of ascorbate peroxidase (APX) and superoxide dismutase (SOD), enzymes involved in the scavenging of reactive oxygen species, were measured upon metal treatment. We found an activation of a cytosolic APX isoform, as identified by using a specific polyclonal antiserum. However, there were negligible changes in SOD activity. Analysis of thiol-peptides revealed that at 6 μM Cd a remarkable increase in root reduced glutathione (GSH) content occurred, and little effect on the relative content of oxidised glutathione (GSSG) was observed. However, at 30 μM Cd and in plants exposed to 6 and 30 μM of Hg, GSH root content either remained stable or decreased significantly, while the proportion of GSSG increased. Moreover, only Cd was able to induce accumulation of phytochelatins at both assayed concentrations. Apparently, Hg was more toxic than Cd, as inferred from the magnitude of the changes found in the physiological parameters tested.

Keywords

cadmium heavy metal sensitivity mercury oxidative stress Zea mays 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ausubel, F M, Brent, R, Kingston, R E, Moore, D D, Seidman, J G, Smith, J A, Struhl, K 1987Current Protocols in Molecular BiologyJohn Wiley and Sons, Inc.USAGoogle Scholar
  2. Beauchamp, C O, Fridovich, I. 1971Superoxide dismutase: improved assays and an assay applicable to acrylamide gelsAnal. Biochem.44276287PubMedCrossRefGoogle Scholar
  3. Berzas, J L, García, L F, Rodríguez, R C 2003Distribution of mercury in the aquatic environment at Almadén, SpainEnviron. Poll.122261271CrossRefGoogle Scholar
  4. Buege, J A, Aust, S D 1978Microsomal lipid peroxidationMethods Enzymol.52302310PubMedGoogle Scholar
  5. Cho, U H, Park, J O 2000Mercury-induced oxidative stress in tomato seedlingsPlant Sci.15619PubMedCrossRefGoogle Scholar
  6. Cobbett, C, Goldsbrough, P 2002Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasisAnn. Rev. Plant Biol.53159182CrossRefGoogle Scholar
  7. Dalton, D A, Díaz-Castillo, L, Kahn, M L, Joyner, S L, Chatfield, J M 1996Heterologous expression and characterisation of soybean cytosolic ascorbate peroxidaseArch. Biochem. Biophys.32818PubMedCrossRefGoogle Scholar
  8. Domínguez-Solís, J R, Gutiérrez-Alcalá, G, Vega, J M, Romero, L C, Gotor, C 2001The cytosolic O-acetylserine(tilo)lyase gene is regulated by heavy metals and can function in cadmium toleranceJ. Biol. Chem.27692979302PubMedCrossRefGoogle Scholar
  9. Dixit, V, Pandey, V, Shyam, R 2001Differential antioxidative responses to cadmium in roots and leaves of pea (Pisum sativum L. cv. Azad)J. Exp. Bot.5211011109PubMedCrossRefGoogle Scholar
  10. Freeman, J L, Persans, M W, Nieman, K, Albrecht, C, Peer, W, Pickering, I J, Salt, D E 2004Increased glutathione biosynthesis play a role in nickel tolerance in Thlaspi nickel hyperaccumulatorsPlant Cell1621762191PubMedCrossRefGoogle Scholar
  11. Guo, T, Zhang, G, Zhou, M, Wu, F, Chen, J 2004Effects of aluminium and cadmium toxicity on growth and antioxidant enzyme activities of two barley genotypes with different Al resistancePlant Soil258241248CrossRefGoogle Scholar
  12. Ha, S B, Smith, A P, Howden, R, Dietrich, W M, Bugg, S, O’Connell, M J, Goldsbrough, P B, Cobbett, C S 1999Phytochelatin synthase genes from Arabidopsis and the yeast Schizosaccharomyces pombe Plant Cell1111531164PubMedCrossRefGoogle Scholar
  13. Hall, J L 2000Cellular mechanisms for heavy metal detoxification and toleranceJ. Exp. Bot.53111CrossRefGoogle Scholar
  14. Hernández L E, Lozano-Rodríguez E, Bonay P and Carpena-Ruiz R O 1998 Fraccionamiento subcelular de Hg en raíz y parte aérea de plantas de maíz y guisante. In Nutrición y Producción: VII Simposio Nacional sobre Nutrición Mineral de las Plantas. Ed. Gárate A. pp. 453–458. Madrid.Google Scholar
  15. Jiménez, A, Hernández, J A, Ros-Barceló, A, Sandalio, L M, Río, L A, Sevilla, F 1998Mitochondrial and peroxisomal ascorbate peroxidase of pea leavesPhysiol. Planta104687692CrossRefGoogle Scholar
  16. Lagriffoul, A, Mocquot, B, Mench, M, Vangronsveld, J 1998Cadmium toxicity effects on growth, mineral and chlorophyll contents, and activities of stress related enzymes in young maize plants (Zea mays L.)Plant Soil200241250CrossRefGoogle Scholar
  17. Lozano-Rodríguez, E, Hernández, L E, Bonay, P, Carpena-Ruiz, R O 1997Distribution of cadmium in shoot and root tissues of maize and pea plants: physiological disturbancesJ. Exp. Bot.48123128Google Scholar
  18. Maitani, T, Kubota, H, Sato, K, Yamada, T 1996The composition of metals bound to class III metallothionein (phytochelatin and its desglycyl peptide) induced by various metals in root cultures of Rubia tinctorum Plant Physiol.11011451150PubMedGoogle Scholar
  19. May, M J, Vernoux, T, Leaver, C, Montagu, M, Inzé, D 1998Glutathione homeostasis in plants: implications for environmental sensing and plant developmentJ. Exp. Bot.49649667CrossRefGoogle Scholar
  20. Meuwly, P, Thibaul, P, Schwan, A L, Rauser, W E 1995Three families of thiol peptides are induced by cadmium in maizePlant J.7391400PubMedCrossRefGoogle Scholar
  21. Noctor, G, Gómez, L, Vanacker, H, Foyer, C H 2002Interactions between biosynthesis, compartmentation and transport in the control of glutathione homeostasis and signallingJ. Exp. Bot.5312831304PubMedCrossRefGoogle Scholar
  22. Nriagu, J O 1990Global metal pollutionEnvironment32733Google Scholar
  23. Rauser, W E 1991Cadmium-binding peptides from plantsMethods Enzymol.205319333PubMedCrossRefGoogle Scholar
  24. Rellán-Álvarez R, Hernández L E, Abadía J and Álvarez-Fernández A 2005 Direct and simultaneous determination of reduced and oxidised glutathione by liquid chromatography/electrospray/mass spectrometry in plant tissues. Anal. Biochem. (submitted).Google Scholar
  25. Romero-Puertas, M C, Palma, J M, Gómez, M, Río, L A, Sandalio, L M 2002Cadmium causes the oxidative modification of proteins in pea plantsPlant Cell Environ.25677686CrossRefGoogle Scholar
  26. Salt, D E, Blaylock, M, Kumar, N P B A, Dushenkov, V, Ensley, B D, Chet, I, Raskin, I 1995Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plantsBiotechnology13468474PubMedCrossRefGoogle Scholar
  27. Sanita di Toppi, L, Gabbrielli, R 1999Response to cadmium in higher plantsEnviron. Exp. Bot.41105130CrossRefGoogle Scholar
  28. Sandalio, L M, Dalurzo, H C, Gomez, M, Romero-Puertas, M C, Río, L A 2001Cadmium-induced changes in the growth and oxidative metabolism of pea plantsJ. Exp. Bot.5221152126PubMedGoogle Scholar
  29. Schützendübel, A, Schwanz, P, Teichmann, T, Gross, K, Langenfeld-Heyser, R, Godbold, D L, Polle, A 2001Cadmium changes in antioxidative systems, hydrogen peroxide content, and differentiation in Scots pine rootsPlant Physiol.127887898PubMedCrossRefGoogle Scholar
  30. Schützendübel, A, Nikolova, P, Rudolf, C, Polle, A 2002Cadmium and H2O2-induced oxidative stress in Populus x canescens rootsPlant Physiol. Biochem.40577584CrossRefGoogle Scholar
  31. Schützendübel, A, Polle, A 2002Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by micorrhizationJ. Exp. Bot.5313511365PubMedCrossRefGoogle Scholar
  32. Tausz, M, Sircelj, H, Grill, D 2004The glutathione system as a stress marker in plant ecophysiology: is a stress-response concept valid?J. Exp. Bot.5519551962PubMedCrossRefGoogle Scholar
  33. Vögeli-Lange, R, Wagner, G W 1996Relationship between cadmium, glutathione and cadmium-binding peptides (phytochelatins) in leaves of intact tobacco seedlingsPlant Sci.1141118CrossRefGoogle Scholar
  34. Woolhouse H W 1983 Toxicity and tolerance in the responses of plants to metals. In Physiological Plant Ecology III. Encyclopaedia of Plant Physiology Vol. 12C. Eds. O L Lange, P S Nobel, C B Osmond and H Ziegler. Springer-Verlag, 246–300.Google Scholar
  35. Xiang, C, Oliver, D J 1998Glutathione metabolic genes co-ordinately respond to heavy metals and jasmonic acid in Arabidopsis Plant Cell1015391550PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Rubén Rellán-Álvarez
    • 1
    • 2
  • Cristina Ortega-Villasante
    • 1
  • Ana Álvarez-Fernández
    • 2
  • Francisca F. del Campo
    • 1
  • Luis E. Hernández
    • 1
  1. 1.Laboratory of Plant Physiology, Department of BiologyUniversidad Autónoma of MadridMadridSpain
  2. 2.Estación Experimental Aula Dei-CSIC Avd. Montañana 1005ZaragozaSpain

Personalised recommendations