Plant and Soil

, Volume 281, Issue 1–2, pp 1–3 | Cite as

Quantity of Standing Litter: A Driving Factor of Root Dynamics



Current understanding of carbon cycling in terrestrial ecosystem views “quantity” of litter input as a parameter determining the size of soil C pools and soil respired CO2: quantity of litter input is not considered a driving factor affecting the patterns of terrestrial ecosystem processes. Emma J. Sayer and collaborators demonstrated that this may not be the case! With a neat and elegant, for its simplicity, manipulation experiment, Sayer et al. (this issue) showed how increasing input of leaf litter affects the patterns of root distribution along the soil profile, in a relatively nutrient rich tropical soil. In their study, roots responded rapidly to changes in fresh leaf litter input and appeared to closely follow the patterns of litter decomposition. Until this study, root exploitation of standing litter was seen solely as an adaptation to nutrient shortage in the mineral soil. Feedback processes between leaf litterfall, decomposition and root dynamics are envisaged. With global climate change likely to alter plant productivity and litterfall, similar feedbacks, if confirmed, will need to be included in terrestrial ecosystem C modelling.


litterfall root growth tropical soils 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Berg, B 1987Dynamics of nitrogen (15N) in decomposing Scots pine (Pinus sylvestris) needle litter. Long-term decomposition in a Scots pine forest. VICan. J. Bot.6615391546Google Scholar
  2. Cotrufo, M F, Ineson, P, Scott, A 1998Elevated CO2 reduces the nitrogen concentration of plant tissuesGlob. Change Biol.44354CrossRefGoogle Scholar
  3. Cuevas, E, Medina, E 1988Nutrient dynamics within Amazonian forests.2. Fine root-growth, nutrient availability and leaf litter decompositionOecologia76222235CrossRefGoogle Scholar
  4. Dormaar, J F 1990Effect of active roots on the decomposition of soil organic materialsBiol. Fertil. Soils10121126Google Scholar
  5. Fujimaki, R, McGonigle, T P, Takeda, H 2004Soil micro-habitat effects on fine roots of Chamaecyparis obtusa Endl.: A field experiment using root ingrowth coresPlant Soil266325332CrossRefGoogle Scholar
  6. Gadgil, R L, Gadgil, P D 1971Mycorrhiza and litter decompositionNature233133CrossRefPubMedGoogle Scholar
  7. Hoosbeek, M R, Lukac, M, Dam, D, Godbold, D L, Velthorst, E J, Biondi, F A, Peressotti, A, Cotrufo, M F, Angelis, P, Scarascia-Mugnozza, G 2004More new carbon in the mineral soil of a poplar plantation under free air carbon enrichment (FACE): Cause of increased priming effect?Glob. Biogeochem. Cycle1810411047Google Scholar
  8. Joslin, J D, Henderson, G S 1987Organic matter and nutrients associated with fine root turnover in a white oak standForest Sci.33330346Google Scholar
  9. Kuzyakov, Y 2002Review: Factors affecting rhizosphere priming effectsJ. Plant Nutr. Soil Sci.165382396CrossRefGoogle Scholar
  10. Laclau, J P, Toutain, F, M’Bou, A T, Arnaud, M, Joffre, R, Ranger, J 2004The function of the superficial root mat in the biogeochemical cycles of nutrients in Congolese Eucalyptus plantationsAnn. Bot.93249261CrossRefPubMedGoogle Scholar
  11. Personeni, E, Loiseau, P 2004How does the nature of living and dead roots affect the residence time of carbon in the root litter continuum?Plant Soil267129141CrossRefGoogle Scholar
  12. Sayer, EJ, Tanner , EVJ, Cheesman, AW 2006 Increased litterfall changes fine root distribution in a moist tropical forestPlant Soil281513Google Scholar
  13. Schlesinger, W H, Lichter, J 2001Limited carbon storage in soil and litter of experimental forest plots under increased atmospheric CO2Nature411466469CrossRefPubMedGoogle Scholar
  14. Subke, J A, Hahn, V, Battipaglia, G, Linder, S, Buchmann, N, Cotrufo, M F 2004Feedback interactions between needle litter decomposition and rhizosphere activityOecologia139551559CrossRefPubMedGoogle Scholar
  15. Vogt, K A, Vogt, D J, Palmiotto, P A, Boon, P, O’Hara, J, Asbjornsen, H 1996Review of root dynamics in forest ecosystems grouped by climate, climatic forest type and speciesPlant Soil187159219CrossRefGoogle Scholar
  16. Wullschleger, S D, Norby, R J, Gunderson, C A 1997Forest trees and their response to atmospheric CO2 enrichment. A compilation of resultsAllen, L H JKirkham, M BOlszyk, D MWhitman, C E eds. Advances in Carbon Dioxide Effects ResearchAmerican Society of Agronomy Special PublicationMadison, WI79100Google Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  1. 1.Dipartimento di Scienze AmbientaliSeconda Università di NapoliCasertaItaly

Personalised recommendations