Plant and Soil

, Volume 280, Issue 1–2, pp 339–356 | Cite as

Root CSA-Root Biomass Prediction Models in Six Tree Species and Improvement of Models by Inclusion of Root Architectural Parameters

  • C. Christian Nørgård Nielsen
  • Jon K. Hansen


Models were developed for Norway spruce, Sitka spruce, Scots pine, Pedunculate Oak and European Beech to predict the biomass of individual structural roots based on either basal root cross sectional area (rCSA) assessments (basic models) or on rCSA and additional root architectural measurements (multiple models). The material embraces 1257 roots from 337 trees derived from 33 stands. The soil types of the investigation cover sandy podzols, sandy moraine, brown earth, deep peat, and pseudogley, but all species were not represented on all soil types. The models were developed for stands in three dimension classes depending on the average diameter of the stands and for horizontal roots (angle to the surface less than 45°) and vertical roots (angle to the surface greater than or equal to 45°), respectively. Simple models using rCSA near the stump to predict coarse root biomass (logarithmic models) did not account for stand differences in Norway spruce and Sitka spruce. To eliminate these differences, it was necessary to include root taper and vertical root parameters in the models. Variation between stands concerning the regression between rCSA and root biomass was not found for Pedunculate Oak, Scots Pine or European Beech, but the number of stands of these species was also limited compared with Norway spruce and Sitka spruce.


conifer deciduous root biomass root biomass prediction root cross sectional area 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bolte, A, Hertel, D, Ammer, C, Schmid, I, Nörr, R, Kuhr, M, Redde, N 2003Freilandmethoden zur Untersuchung von BaumwurzelnForstarchiv74240262Google Scholar
  2. Bingham I J, Baddelay J A and Watson C A 2001 Development and evaluation of a technique for the rapid measurement of cereal root systems. HGCA Project report no. 257, Home grown Cereals Authority, London UKGoogle Scholar
  3. Chatterjee, S, Price, B 1977Regression analysis by exampleJohn Wiley and Sons, IncUSA228ISBN 0-471-01521-0Google Scholar
  4. Chatterjee, S, Price, B 1991Regression analysis by example, Second editionJohn Wiley and Sons, IncUSA 278ISBN 0-471-88479-0Google Scholar
  5. Coutts, M P 1983Development of the Structural Root Systems of Sitka SpruceForestry, Nr. 156116Google Scholar
  6. Coutts, M P, Nielsen, C C N, Nicoll, B C 1999The development of symmetry, rigidity and anchorage in the structural root system of conifersPlant and Soil217115CrossRefGoogle Scholar
  7. Deans D 1981 Dynamics of Coarse Root Production in a Young Plantation of Picea Sitchensis. Forestry, Nr. 2, Vol. 54.Google Scholar
  8. Kapeluck, P R, Lear, D H 1995A technique for estimating below-stump biomass of mature loblolly pine plantationsCan. J. For.25355360Google Scholar
  9. Korotaev, A A 1997Wurzelmorphologische Untersuchungen der Fichte (Picea abies (L.) KARST.) auf Sand- und Schluffböden im Gebiet von StPetersburg. Forstarchiv68102108Google Scholar
  10. Kuiper, L C, Coutts, M 1992Spatial disposition and extension of the structural root system of Douglas firFor. Ecol. Man.47111125Google Scholar
  11. Mallows, C L 1973Some comments on CpTechnometrics15463481Google Scholar
  12. Miller, D P 1984Reducing transformation bias in curve fittingAm. Stat.38124126Google Scholar
  13. Naidu, S L, DeLucia, E H, Thomas, R B 1998Contrasting patterns of biomass allocation in dominant and suppressed loblolly pineCan. J. For. Res.2811161124CrossRefGoogle Scholar
  14. Nichols, T J, Alm, A A 1983Root development of container-reared nursery-grown, and naturally regenerated pine seedlingsCan. J. For. Res.13239245Google Scholar
  15. Nielsen, C C N 1982En stabilitetsundersøgelse i Pinus contarta ved hjælp af en trækmålingsmetode [Wind stability in Pinus Contorta as tested with a tree-pulling method]Dansk Skovforenings Tidsskrift671Google Scholar
  16. Nielsen, C C N 1990Einflüsse von Pflanzenabstand und Stammzahlhaltung auf Wurzelform, Wurzelbiomasse, Verankerung sowie auf die Stürmfestigkeit bei Fichte. Schriften der Forstl. Fak. Der Univ. Göttingen und der Nds. ForstlVersuchsanstalt1001277Google Scholar
  17. Nielsen C C N 1992 Will traditional conifer tree breeding for stem biomass productivity reduce wind stability? Genetic variation in allocation of biomass to root classes and stem. Silvae genetica 1992.Google Scholar
  18. Nielsen C C N 1995 Detailed instructions for root architecture assessment with the ROOTARCH-method. Internal report No. 7, August 1995, Arboretum, R. Vet. and Agric. University, DenmarkGoogle Scholar
  19. Nielsen C C N and Hansen J K 2000 “Functional aspects of root architecture and biomass allocation of six major European forest tree species. Final consolidated scientific report for the EU-project “Aspects of sustainability by afforestation of agricultural set-aside areas: Development of roots and root/shoot-ratios” (contract AIR3-CT93–1269). Vol. 1, pp. 297. Submitted to the “The Research Series” Danish Forest and Landscape Research Institute and the Royal Vet. & Agric. University”. Status: in international refereeGoogle Scholar
  20. Hansen J K and Nielsen C C N (2005) Prediction of coarse root biomass in Norway spruce, Sitka spruce, Scots pine, Pedunculate Oak and European Beech based on above ground tree and stand parameters, in prepGoogle Scholar
  21. Nielsen C C N and Knudsen M A 2005 A Danish shelterwood trial I: Above and below ground adaptation of architecture and growth to strong release. In submission to TreesGoogle Scholar
  22. Oleksyn, J, Reich, P B, Chalupka, W, Tjoelker, M G 1999Differential above- and belowground biomass accumulation of European Pinus silvestris populations in a 12-year-old provenance experimentScand. J. For. Res.14717Google Scholar
  23. Ovington, J D 1957Dry-matter Production by Pinus sylvestris LAnnals of Botany, N.S.21288314Google Scholar
  24. Ovington, J D, Madgwick, H A I 1959Distribution of Organic Matter and Plant Nutrients in a Plantation of Scots PineFor. Sci.5344355Google Scholar
  25. Ray, D, Nicoll, B 1998The effect of soil water-table depth on root-plate development and stability of Sitka spruceForestry71169182CrossRefGoogle Scholar
  26. Santantonio, D, Hermann, R K, Overton, W S 1977Root biomass studies in forest ecosystemsPedobiologia17131Google Scholar
  27. SAS Institute Inc.1990SAS/STAT User's Guide Version 6, Fourth editionSAS Institute Inc.Cary, NC, USAGoogle Scholar
  28. SAS Institute1999SAS OnlineDoc®SAS Institute Inc.Cary, NC, USAGoogle Scholar
  29. Snowdon, P 1985Effects of fertilizer and family on the homogeneity of biomass regressions for young Pinus radiataAust. For. Res.15135140Google Scholar
  30. Stokes, A, Nicoll, B C, Coutts, M P, Fitter, A H 1997Responses of young Sitka spruce clones to mechanical pertubation and nutrition: effects on biomass allocation, root development, and resistance to bendingCan. J. For. Res.2710491057CrossRefGoogle Scholar
  31. Thies, W G, Cunningham, P G 1996Estimating large-root biomass from stump and breast-height diameters for Douglas-fir in Western OregonCan. J. For. Res.26237243Google Scholar
  32. Wagner, R G, Ter-Mikaelian, M T 1999Comparisons of biomass component equations for four species of northern coniferous tree seedlingsAnn. For. Sci.56193199Google Scholar
  33. Wilson B F 1975 Distribution of Secondary Thickening in Tree Root Systems, in FOREY/CLARSON: The Development and Funktions of Roots, Academic PressGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • C. Christian Nørgård Nielsen
    • 1
  • Jon K. Hansen
    • 2
  1. 1.Department of Landscape and Urban Forestry, Centre of Forest and LandscapeRoyal Veterinary and Agricultural University, CopenhagenFrederiksberg CDenmark
  2. 2.Department of Genetics, Centre of Forest and LandscapeRoyal Veterinary and Agricultural University, CopenhagenFrederiksberg CDenmark

Personalised recommendations