Plant and Soil

, Volume 275, Issue 1–2, pp 305–315 | Cite as

Plant growth, nutrient acquisition and mycorrhizal symbioses of a waterlogging tolerant legume (Lotus glaber Mill.) in a saline-sodic soil

  • Rodolfo Mendoza
  • Viviana Escudero
  • Ileana García


Seedlings of Lotus glaberMill., were grown in a native saline-sodic soil in a greenhouse for 50 days and then subjected to waterlogging for an additional period of 40 days. The effect of soil waterlogging was evaluated by measuring plant growth allocation, mineral nutrition and soil chemical properties. Rhizobiumnodules and mycorrhizal colonisation in L. glaberroots were measured before and after waterlogging. Compared to control plants, waterlogged plants had decreased root/shoot ratio, lower number of stems per plant, lower specific root length and less allocation of P and N to roots. Waterlogged plants showed increased N and P concentrations in plant tissues, larger root crown diameter and longer internodes. Available N and P and organic P, pH and amorphous iron increased in waterlogged soil, but total N, EC and exchangeable sodium were not changed. Soil waterlogging decreased root length colonised by arbuscular mycorrhizal (AM) fungi, arbuscular colonisation and number of entry points per unit of root length colonised. Waterlogging also increased vesicle colonisation and Rhizobium nodules on roots. AM fungal spore density was lower at the end of the experiment in non-waterlogged soil but was not reduced under waterlogging. The results indicate that L. glaber can grow, become nodulated by Rhizobium and colonised by mycorrhizas under waterlogged condition. The responses of L. glaber may be related its ability to form aerenchyma.


arbuscular-micorrhizas halomorphic soil phosphorus and nitrogen uptake waterlogging tolerant legume 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Amijee, F, Tinker, PB, Stribley, DP 1989The development of endomycorrhizal systems VII A detailed study of the effects of soil phosphorus on colonisationNew Phytologist.111435446Google Scholar
  2. Arrese-Igor, C, RoyuelaMde Lorenzo, C, Felipe, MR, Aparicio-Tejo, PM 1993Effect of low rhizosphere oxygen on growth, nitrogen fixation and nodule morphologyPhysiol. Plantarum.895563Google Scholar
  3. Aziz, T, Sylvia, D, Doren, R 1995Activity and species composition of arbuscular mycorrhizal fungi following soil removalEcol. Appl.5776784Google Scholar
  4. Blumenthal M J, McGraw R L(1999). Lotus adaptation, use, and management. In: Beuselinck P R(ed), Trefoil The Science and Technology of Lotus. American Society of Agronomy Inc Crop Science Society of America Inc, Madison Wisconsin USA, pp: 97-119Google Scholar
  5. Braunberger, P G, Miller, M H, Peterson, R L 1991Effect of phosphorus nutrition on morphological characteristics of vesicular-arbuscular mycorrhizal colonisation of maizeNew Phytol.119107113Google Scholar
  6. Bray, R H, Kurtz, L T 1945Determination of total organic and available forms of phosphorus in soilsSoil Sci.593945Google Scholar
  7. Brenner J M, Mulvaney C S(1982). Nitrogen total. In: Methods in Soil Analysis: Agronomy. Ed. C A Black. pp 595-624. Am. Soc. Agron. Inc. Madison, Wisconsin, USAGoogle Scholar
  8. Brown, A, Bledsoe, C 1996Spatial and temporal dynamics of mycorrhizas in Jaumea carnosa, a tidal saltmarsh halophyteJ Ecol.84703715Google Scholar
  9. Carvalho, L M, Caçador, I, Martins-Louçâo, M A 2001Temporal and spatial variation of arbuscular mycorrhizas in salt marsh plants of the Tagus estuary (Portugal)Mycorrhiza.11303309CrossRefGoogle Scholar
  10. Chalk, P M, Waring, S A 1970Evaluation of rapid test for assesing N availability in wheat soils I: Correlation with plant indices of availability obtained in pot cultureAust. J. Exp. Agric. Anim. Husb.10298305Google Scholar
  11. Chaneton, E, Facelli, J, León, R 1988Floristic changes induced by flooding on grazed lowland grasslands in ArgentinaJ. Range Manage.41495499Google Scholar
  12. Collantes, M, Kade, M, Myacszynski, C, Santanatoglia, O 1988Distribución de especies en función de factores edáficos en un pastizal natural de la Depresión del Río Salado (Provincia de Buenos Aires)Stud. Oecologica57793Google Scholar
  13. Cooke, J C, Butler, R H, Madole, G 1993Some observations on the vertical distribution of vesicular-arbuscular mycorrhizae in roots of salt marsh grasses growing in saturated soilsMycologia.85547550Google Scholar
  14. Daniels, BA, Skipper, HA 1982Methods for the recovery and quantitative estimation of propagules from soilSchenck, NC eds. Methods and Principles of Mycorrhizal ResearchAmerican Phytopathological SocietySt Paul, MI, USA2935Google Scholar
  15. Drew, MC, Lynch, JM 1980Soil anaerobiosis, microorganisms, and root functionAnnu. Rev. Phytopathol.183766CrossRefGoogle Scholar
  16. Entry, J A, Rygiewicz, PT, Watrud, LS, Donnelly, PK 2002Influence of adverse soil conditions on the formation and function of Arbuscular mycorrhizas Adv. Envion. Res.7123138Google Scholar
  17. Escudero V G and Mendoza R E (2004). Seasonal variation of arbuscular mycorrhizal fungi in temperate grasslands along a wide hydrologic gradient. Mycorrhiza. in press.Google Scholar
  18. Giovannetti, M, Mosse, B 1980An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in rootsNew Phytol.84489500Google Scholar
  19. Graham, JH, Leonard, RT, Menge, JA 1981Membrane-mediated decrease in root exudation responsible for phosphorus inhibition of vesicular-arbuscular mycorrhiza formationPlant Physiol.68548552PubMedGoogle Scholar
  20. Hall, IR 1977Species and mycorrhizal infections of New Zealand EndogonaceaeTrans. Br. Mycol. Soc.68341356Google Scholar
  21. Hall, IR, Fish, BJ 1979A key to the EndogonaceaeTrans. Br. Mycol. Soc.73261270Google Scholar
  22. Hiler, EA, Bavel, CHM, Hossain, MM, Jordan, WR 1972Sensitivity of southern peas to plant water deficit at three growth stagesAgron. J.646064CrossRefGoogle Scholar
  23. Jackson, ML 1958Soil chemical analysisBlack, CAEvans, DDWhite, JREnsminger, GEClarck, FE eds. Method of Soil Analysis Part 2 Chemical and Microbiological PropertiesPrentice HallInc Englewood Cliffs801Google Scholar
  24. Jackson, MB, Drew, MC 1984Effect of flooding on growth and metabolism of herbaceous plantKozlowski, TT eds. Flooding and Plant GrowthAcademic PressOrlando47128Google Scholar
  25. James, EK, Crawford, RMM 1998Effect of oxygen availability on nitrogen fixation by two Lotus species under flooded conditionsJ. Exp. Bot.49599609CrossRefGoogle Scholar
  26. Juniper, S, Abbot,  1993Vesicular-arbuscular mycorrhizas and soil salinityMycorrhiza44557CrossRefGoogle Scholar
  27. Kleiman, ID, Cogliatti, DH, Santa María, GE 1992Efecto de la Hipoxia sobre el crecimiento y Adquisición de Nutrimentos en Lolium multiflorum Turrialba42210219Google Scholar
  28. Mazzanti, A, Montes, L, Minon, D, Sarlangue, H, Chepi, C 1988Utilización de Lotus tenuis en la Pampa Deprimida: resultado de una encuestaRev. Agr. Prod. Anim.8301305Google Scholar
  29. McGonigle, T P, Miller, M H, Evans, DG, Fairchaild, GL, Swan, JA 1990A new method which gives an objective measure of colonisation of roots by vesicular-arbuscular mycorrhizal fungiNew Phytol.115495501Google Scholar
  30. Mendoza, RE, Pagani, E 1997Influence of phosphorous nutrition on mycorrhizal growth response and morphology of mycorrhizae in Lotus tenuis J. Plant Nutr.20625639CrossRefGoogle Scholar
  31. Mendoza, R, Pagani, E, Pomar, MC 2000Variabilidad poblacional de Lotus glaber en relación con la absorción de fósforo en sueloEcología Austral.10314Google Scholar
  32. Miller, SP 2000Arbuscular mycorrhizal colonisation of semi-aquatic grasses along a wide hydrologic gradientNew Phytol.145145155CrossRefGoogle Scholar
  33. Morton, JB 1988Taxonomy of VA mycorrhizal fungi: Classification, nomenclature, and identificationMycotaxon.32267324Google Scholar
  34. Morton, JB 1990Evolutionary relationships among arbuscular mycorrhizal fungi in the EndogonaceaeMycologia82192207Google Scholar
  35. Mosse, B, Stribley, D, Le Tacon, F 1981Ecology of mycorrhizas and mycorrhizal fungiAlexander, M. eds. Advances in Microbial EcologyPlenun PressNew York137210Google Scholar
  36. Muthukumar, T, Udaiyan, K, Karthikeyan, A, Manian, S 1997Influence of native endomycorrhiza, soil flooding and nurse plant on mycorrhizal status and growth of puple nutsedge (Cyperus rotundus L.). AgricultEcosyst. Environ.615158CrossRefGoogle Scholar
  37. Olson, R V 1965Chapter ironBlack, CA eds. Methods of Soil AnalysisASA Inc PublisherMadison, Wisconsin, USA963973Agronomy N° 9. Part 2.Google Scholar
  38. Phillips, JM, Hayman, DS 1970Improve procedure for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infectionTrans. Br. Mycol. Soc.55158161CrossRefGoogle Scholar
  39. Ponnamperuma, F N 1984Effects of flooding on soilsKozlowski, TT eds. Flooding and Plant GrowthAcademic PressNY1045Google Scholar
  40. Powell, CL 1974Effect of P fertilizer on root morphology and P uptake of Carex coriacea Plant Soil41661667CrossRefGoogle Scholar
  41. Richter, M, Wistinghausen, E 1981Untersheridbarkeit von Humusfraktione in Boden bei Unterschiedlicher Bewirtschaftung Z.Pflanzenernaehr Bodenk.144395406Google Scholar
  42. Rickerl, DH, Sancho, FO, Ananth, S 1994Vesicular arbuscular endomycorrhizal colonisation of wetland plantsJ. Environ. Qual.23913916CrossRefGoogle Scholar
  43. Rubio, G, Casasola, G, Lavado, R S 1995Adaptations and biomass production of two grasses in response to waterlogging and soil nutrient enrichmentOecologia102102105Google Scholar
  44. Rubio, G, Oesterheld, M, Alvarez, CR, Lavado, RS 1997Mechanisms for the increase in phosphorus uptake of waterlogged plants: Soil phosphorus availability, root morphology and uptake kineticsOecologia112150155CrossRefGoogle Scholar
  45. Ryan, MH, McCully, ME, Huang, CX 2003Location and quantification of phosphorus and other elements in fully hydrated, soil-grown arbuscular mycorrhizas: a cryo-analytical scanning electron microscopy studyNew Phytol.160429441CrossRefGoogle Scholar
  46. Sah, RN, Mikkelsen, DS, Hafez, AA 1989Phosphorus behavior in flooded-drained soils. II. iron transformation and phosphorus sorptionSoil Sci. Soc. Am. J.5317231729Google Scholar
  47. Smith, SE 1993Transport at the mycorrhizal interfaceMycorrhiza News514Google Scholar
  48. Szaboles I (1991). Desertification and salinization. In Plant Salinity Research. Ed. R Choukr-Allah.Google Scholar
  49. Vignolio O, Fernández O and Maceira N (1996). Respuestas de Lotus tenuis y Lotus corniculatus (Leguminosae) al anegamiento en plantas de distintas edades. Rev. de la Fac. de Agronomía, La Plata 101: 57-66Google Scholar
  50. Vignolio, O, Fernández, O, Maceira, N 1999Flooding tolerance in five populations of Lotus glaber Mill. (Syn. Lotus tenuis Waldst. Et. Kit.)Aust. J. Agric. Res.50555559Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Rodolfo Mendoza
    • 1
  • Viviana Escudero
    • 2
  • Ileana García
    • 1
  1. 1.Centro de Estudios Farmacológicos y Botánicos (CEFYBO)Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Buenos AiresArgentina
  2. 2.Escuela de AgronomíaUniversidad del MarValparaísoChile

Personalised recommendations