Plant and Soil

, Volume 279, Issue 1–2, pp 229–242 | Cite as

Relationships Between Climatic Variables and Sap Flow, Stem Water Potential and Maximum Daily Trunk Shrinkage in Lemon Trees

  • M. F. Ortuño
  • Y. García-Orellana
  • W. Conejero
  • M. C. Ruiz-Sánchez
  • O. Mounzer
  • J. J. Alarcón
  • A. Torrecillas


The feasibility of obtaining sap flow (SF), maximum daily trunk shrinkage (MDS) and midday stem water potential (Ψstem) baselines or reference values for use in irrigation scheduling was studied in adult Fino lemon trees (Citrus limon (L.) Burm. fil.) grafted on sour orange (C. aurantium L.) rootstocks. Plants were irrigated daily above their water requirements in order to obtain non-limiting soil water conditions. The results indicated that baselines for plant-based water status indicators (MDS, SF and Ψstem) can be obtained, even though there was a certain scattering of the data points representing the relations between the plant-based measurements and the environmental variables (reference evapotranspiration, solar radiation, vapour pressure deficit and temperature). SF was more closely associated with changes in the studied evaporative demand variables than were MDS and Ψstem. SF and Ψstem were more closely correlated with changes in reference evapotranspiration (ETo) (r 2 = 0.93 and 0.79, respectively), while MDS behaviour was best correlated with mean daily air temperature (T m) (r 2 = 0.76). Increases in the evaporative demand induced more negative Ψstem values and, as a consequence, SF increased, which, in turn, was translated into an increase in MDS. This confirmed that SF and MDS were very good predictors of the plant water status during the observation period and their continuous recording offers the promising possibility of their use in automatic irrigation scheduling in lemon trees.


irrigation scheduling lemon plant–water relations sap flow trunk diameter fluctuations 



midday stem water potential


crop evapotranspiration


reference evapotranspiration


maximum daily trunk shrinkage


solar radiation


sap flow


trunk diameter fluctuations


mean daily air temperature


midday air temperature


daily mean vapour pressure deficit


midday vapour pressure deficit


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alarcón J J, Ortuño M F, Nicolás E, Torres R, Torrecillas A 2005 Compensation heat-pulse measurements of sap flow for estimating transpiration in young lemon trees. Biol. Plant. (in press).Google Scholar
  2. Allen, R G, Pereira, R S, Raes, D, Smith, M 1998Crop evapotranspiration-guidelines for computing crop water requirements. Irrigation and Drainage 56FAORomaGoogle Scholar
  3. Améglio, T, Archer, P, Cohen, M, Valancogne, C, Daudet, F A, Dayau, S, Cruiziat, P 1999Significance and limits in the use of predawn leaf water potential for tree irrigationPlant Soil207155167CrossRefGoogle Scholar
  4. Choné, X, Leeuwen, C, Dubourdieu, D, Gaudillère, J P 2001Stem water potential is a sensitive indicator of grapevine water statusAnn. Bot.87477483CrossRefGoogle Scholar
  5. Cohen, M, Goldhamer, D, Fereres, E, Girona, J, Mata, M 2001Assessment of peach tree responses to irrigation water deficits by continuous monitoring of trunk diameter changesJ. Hort. Sci. Biotech.765560Google Scholar
  6. Domingo, R, Ruiz-Sánchez, M C, Sánchez-Blanco, M J, Torrecillas, A 1996Water relations, growth and yield of Fino lemon trees under regulated deficit irrigationIrrig. Sci.16115123Google Scholar
  7. Edwards, W R N, Warwick, N W M 1984Transpiration from a kiwifruit vine as estimated by the heat-pulse technique and the Penman–Monteith equationNew Zeal. J. Agric. Res.27537543Google Scholar
  8. Fereres, E, Goldhamer, D A 2003Suitability of stem diameter variations and water potential as indicators for irrigation scheduling of almond treesJ. Hort. Sci. Biotech.78139144Google Scholar
  9. Fernández, J E, Palomo, M J, Díaz-Espejo, A, Clothier, B E, Green, S R, Girón, I F, Moreno, F 2001Heat-pulse measurements of sap flow in olives for automating irrigation: Tests, root flow and diagnostics of water stressAgric. Water Manage.5199123CrossRefGoogle Scholar
  10. Goldhamer, D A, Fereres, E 2001Irrigation scheduling protocols using continuously recorded trunk diameter measurementsIrrig. Sci.20115125CrossRefGoogle Scholar
  11. Goldhamer, D A, Fereres, E 2004Irrigation scheduling of␣almond trees with trunk diameter sensorsIrrig. Sci.231119CrossRefGoogle Scholar
  12. Goldhamer, D A, Fereres, E, Mata, M, Girona, J, Cohen, M 1999Sensitivity of continuous and discrete plant and soil water status monitoring in peach trees subjected to deficit irrigationJ. Am. Soc. Hort. Sci.124437444Google Scholar
  13. Goldhamer, D A, Fereres, E, Salinas, M 2003Can almond trees directly dictate their irrigations needs?Calif. Agric.57138144CrossRefGoogle Scholar
  14. Green, S R, Clothier, B E 1988Water use of kiwifruit vines and apple trees by the heat-pulse techniqueJ. Exp. Bot.39115123Google Scholar
  15. Hatfield, J L, Fuchs, M F 1990Evapotranspiration modelsHoffman, G JHowell, T ASolomon, K H eds. Management of Farm Irrigation SystemsASAE MonographSt. Joseph3360Google Scholar
  16. Huguet, J G, Li, S H, Lorendeau, J Y, Pelloux, G 1992Specific micromorphometric reactions of fruit trees to water stress and irrigation scheduling automationJ. Hort. Sci.67631640Google Scholar
  17. Hsiao, T C 1990Measurements of plant water statusStewart, B ANielsen, D R eds. Irrigation of Agricultural Crops (Monograph no. 30)American Society of AgronomyMadison243279Google Scholar
  18. Intrigliolo, D S, Castel, J R 2004Continuous measurement of plant and soil water status for irrigation scheduling in plumIrrig. Sci.2393102CrossRefGoogle Scholar
  19. Katerji, N, Tardieu, F, Bethenod, O, Quetin, P 1994Behaviour of maize stem diameter during drying cycles: Comparison of two methods for detecting water stressCrop Sci.34165169CrossRefGoogle Scholar
  20. Marsal, J, Gelly, M, Mata, M, Arbon és, J, Rufat, J, Girona, J 2002Phenology and drought affects the relationship between daily trunk shrinkage and midday stem water potential of peach treesJ. Hort. Sci. Biotech.77411417Google Scholar
  21. Martin, D L, Stegman, E C, Fereres, E 1990Irrigation scheduling principlesHoffman, G JHowell, T ASolomon, K H eds. Management of Farm Irrigation SystemsASAE MonographSt. Joseph155203Google Scholar
  22. Molz, F J, Klepper, B 1973On the mechanism of water-stress-induced stem deformationAgron. J.65304306CrossRefGoogle Scholar
  23. Moreno, F, Fernández, J E, Clothier, B E, Green, S R 1996Transpiration and root water uptake by olive treesPlant Soil1848596CrossRefGoogle Scholar
  24. Naor, A 2000Midday stem water potential as a plant water stress indicator for irrigation scheduling in fruit treesActa Hortic.537447454Google Scholar
  25. Ortuño, M F, Alarcón, J J, Nicolás, E, Torrecillas, A 2004aComparison of continuously recorded plant-based water stress indicators for young lemon treesPlant Soil267263270CrossRefGoogle Scholar
  26. Ortuño, M F, Alarcón, J J, Nicolás, E, Torrecillas, A 2004bInterpreting trunk diameter changes in young lemon trees under deficit irrigationPlant Sci.167275280CrossRefGoogle Scholar
  27. Pataki, D E, Oren, R 2003Species differences in stomatal control of water loss at the canopy scale in a mature bottomland deciduous forestAdv. Water Resour.2612671278CrossRefGoogle Scholar
  28. Remorini, D, Massai, R 2003Comparison of water status indicators for young peach treesIrrig. Sci.223946Google Scholar
  29. Shackel, K A, Ahmadi, H, Biasi, W, Buchner, R, Goldhamer, D, Gurusinghe, S, Hasey, J, Kester, D, Krueger, B, Lampinen, B, McGourty, G, Micke, W, Mitcham, E, Olson, B, Pelletrau, K, Philips, H, Ramos, D, Schwankl, L, Sibbett, S, Snyder, R, Soutwick, S, Stevenson, M, Thorpe, M, Weinbaum, S, Yeager, J. 1997Plant water status as an index of irrigation need in deciduous fruit treesHortTechnology72329Google Scholar
  30. Swanson, R H, Whitfield, D W A 1981A numerical analysis of heat-pulse velocity theory and practiceJ. Exp. Bot.32221239Google Scholar
  31. Trout, T J, García-Castillas, I G, Hart, W E 1982Soil-water engineering. Field and laboratory manualDepartment of Agricultural and Chemical Engineering. Colorado State University and Water Management Sintesis ProjectFort CollinsGoogle Scholar
  32. Vélez J E 2004 Programación de riego en cítricos en base a sensores de medida del estado hídrico del suelo y la planta. Tesis Doctoral, Universidad Politécnica de Valencia, 113 pp.Google Scholar
  33. Zweifel, R, Item, H, Hasler, R 2001Link between diurnal stem radius changes and tree water relationsTree Physiol.21869877PubMedGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • M. F. Ortuño
    • 1
  • Y. García-Orellana
    • 2
  • W. Conejero
    • 1
  • M. C. Ruiz-Sánchez
    • 1
    • 3
  • O. Mounzer
    • 1
  • J. J. Alarcón
    • 1
    • 3
  • A. Torrecillas
    • 1
    • 3
  1. 1.Dpto. Riego y SalinidadCentro de Edafología y Biología Aplicada del Segura (CSIC)MurciaSpain
  2. 2.Dpto. Ingeniería AgrícolaUniversidad Centro Occidental Lisandro Alvarado (UCLA)BarquisimetoVenezuela
  3. 3.Unidad Asociada al CSIC de Horticultura Sostenible en Zonas Áridas (UPCT-CEBAS)MurciaSpain

Personalised recommendations