Plant and Soil

, Volume 279, Issue 1–2, pp 119–128 | Cite as

A Method to Estimate Practical Radial Oxygen Loss of Wetland Plant Roots



The estimation of practical radial oxygen loss (ROL) of wetland plant roots was attempted in this study. We have devised a new method to measure ROL of wetland plant roots. The whole root system was bathed in an anoxic nutrient solution. Oxygen released from the root was removed immediately by introducing oxygen-free nitrogen gas (O2 < 4 nmol L−1) to mimic natural habitats where released oxygen is consumed rapidly due to chemical and biological oxidation processes. Oxygen removed from the root-bathing chamber was simultaneously detected colorimetrically by use of the highly oxygen-sensitive anthraquinone radical anion (AQ·) in a cell outside the root-bathing chamber, which decolorized by a rapid reaction with oxygen. An emergent macrophyte Typha latifolia L. was incubated, and its ROL was measured by both the new method and one of the conventional methods, the closed chamber/electrode method, by which the ROL of Typha latifolia L. had not yet been measured. The new method succeeded in detecting the ROL, whereas the conventional method was not able to detect oxygen, due to the level being below the detection limit of the oxygen electrode. The oxygen supply via the seedlings of Typha latifolia L. was ca. 10 times higher compared with control measurements without plant. Light illumination significantly enhanced the ROL of Typha latifolia L. (0.33 nmol O2 g−1 root dry weight s−1 under light and 0.18 nmol O2 g−1 root dry weight s−1 in the dark). Theses values fall between those previously reported by the closed chamber/titanium citrate method and the open chamber/electrode method.


oxygen radial oxygen loss root Typha latifolia L. 




Anthraquinone radical anion



radial oxygen loss


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Armstrong, J, Armstrong, W 1988Phragmites australis – A preliminary study of soil-oxidizing sites and internal gas transport pathwaysNew Phytol.108373382CrossRefGoogle Scholar
  2. Armstrong, J, Armstrong, W 1990Light-enhanced convective throughflow increases oxygenation in rhizomes and rhizosphere of Phragmites australis (Cav.) Trin. Ex SteudNew Phytol.114121128CrossRefGoogle Scholar
  3. Armstrong, J, Armstrong, W 1991A convective through-flow of gases in Phragmites australis (Cav.) Trin. Ex SteudAquat. Bot.397588CrossRefGoogle Scholar
  4. Armstrong, J, Armstrong, W, Beckett, P M 1992Phragmites australis: venture- and humidity-induced pressure flows enhance rhizome aeration and rhizosphere oxidationNew Phytol.120197207CrossRefGoogle Scholar
  5. Armstrong, W 1972A re-examination of the functional significance of aerenchymaPhysiol. Plant.27172177CrossRefGoogle Scholar
  6. Arth, I, Frenzel, P, Conrad, R 1998Denitrification coupled to nitrification in the rhizosphere of riceSoil. Biol. Biochem.30509515CrossRefGoogle Scholar
  7. Arth, I, Frenzel, P 2000Nitrification and denitrification in the rhizosphere of rice: the detection of processes by a new multi- channel electrodeBiol. Fert. Soils31427435CrossRefGoogle Scholar
  8. Bedfold, B L, Bouldin, D R, Beliveau, B D 1991Net oxygen and carbon-dioxide balance in solutions bathing roots of wetland plantsJ. Ecol.79943959CrossRefGoogle Scholar
  9. Bendix, M, Tornbjerg, T, Brix, H 1994Internal gas transport in Typha latifolia L. and Typha angustifolia L. 1. Humidity-induced pressurization and convective throughflowAquat. Bot.497589CrossRefGoogle Scholar
  10. Bodelier, P L E, Libochant, J A, Blom, C W P M, Laanbroek, H J 1996Dynamics of nitrification and denitrification in root-oxygenated sediments and adaptation of ammonia-oxidizing bacteria to low-oxygen or anoxic habitatsAppl. Environ. Microb.6241004107Google Scholar
  11. Bolland, J L, Cooper, H R 1953Photosensitized oxidation of alcoholsNature172413414CrossRefGoogle Scholar
  12. Bosse, U, Frenzel, P 1997Activity and distribution of methane-oxidizing bacteria in flooded rice soil microcosms and in rice plants (Oryza sativa)Appl. Environ. Microbiol.6311991207PubMedGoogle Scholar
  13. Brix, H, Sorrell, B K, Orr, P T 1992Internal pressurization and convective gas flow in some emergent fresh water macrophytesLimnol. Oceanogr.3714201433Google Scholar
  14. Cafferey, J M, Kemp, W M 1991Seasonal and spatial patterns of oxygen production, respiration and root-rhizome release in Potamogeton perfoliatus L. and Zostera marina LAquat. Bot.40109128CrossRefGoogle Scholar
  15. Carpenter, S R, Elser, J J, Olson, K M 1983Effect of roots of Myriophyllum verticillatum L. on sediment redox conditionsAquat. Bot.17243249CrossRefGoogle Scholar
  16. Chen, R L, Barko, J W 1988Effects of freshwater macrophytes on sediment chemistryJ. Freshwater Ecol.4279289Google Scholar
  17. Christensen, P B, Revsbech, N P, Sand-Jensen, K 1994Microsensor analysis of oxygen in the rhizosphere of the aquatic macrophyte Littorella uniflora (L.) AschesonPlant Physiol.105847852PubMedGoogle Scholar
  18. Conlin, T S S, Crowder, A A 1988Location of radial oxygen loss and zones of potential iron uptake in a grass and two nongrass emergent speciesCan. J. Bot.67717722Google Scholar
  19. Connell, E L, Colmer, T D, Walker, D I 1999Radial oxygen loss from intact roots of Halophila ovalis as a function of distance behind the root tip and shoot illuminationAquat. Bot.63219228CrossRefGoogle Scholar
  20. Dacey, J W H 1980Internal winds in water lilies: an adaptation for life in anaerobic sedimentsScience21010171019PubMedGoogle Scholar
  21. Dacey, J W H 1981Pessurized ventilation in the yellow waterliliyEcology6211371147CrossRefGoogle Scholar
  22. DeLaune, R D, Pezeshki, S R, Pardue, J H 1990An oxidation-reduction buffer for evaluation the physiological response of plants to oxygen stressEnviron. Exp. Bot.30243247CrossRefGoogle Scholar
  23. Frans-Jaco, W A, Nat, , Middelburg, J J 1998Seasonal variation in methane oxidation by the rhizosphere of Phragmites australis and Scirpus lacustris Aquat. Bot.6195110CrossRefGoogle Scholar
  24. Frenzel, P, Rothfuss, F, Conrad, R 1992Oxygen profiles and methane turnover in a flooded rice microcosmBiol. Fert. Soils148489CrossRefGoogle Scholar
  25. Gilbert, B, Frenzel, P 1998Rice roots and CH4 oxidation: the activity of bacteria, their distribution and the microenvironmentSoil Biol. Biochem.3019031916CrossRefGoogle Scholar
  26. Green, M S, Etherington, J R 1977Oxidation of ferrous iron by rice (Oryza sativa L.) roots: a mechanism for waterlogging tolerance?J. Exp. Bot.28678690Google Scholar
  27. Grosse, W 1996Pressurized ventilation in floating-leaved aquatic macrophytesAquat. Bot.54137150CrossRefGoogle Scholar
  28. Jaynes, M L, Carpenter, S R 1986Effects of vascular and nonvascular macrophytes on sediment redox and solute dynamicsEcology67875882CrossRefGoogle Scholar
  29. Jespersen, D N, Sorrell, B K, Brix, H 1998Growth and root oxygen release by Typha latifolia and its effect on sediment methanogensisAquat. Bot.61165180CrossRefGoogle Scholar
  30. Justin, S H F W, Armstrong, W 1987The anatomical characteristics of roots and plant response to soil floodingNew Phytol.106465495Google Scholar
  31. Kemp, W M, Murray, L 1986Oxygen release from roots of the submerged macrophyte Potamogeton perfoliatus L.: regulating factors and ecological implicationsAquat. Bot.26271283CrossRefGoogle Scholar
  32. Kludze, H K, DeLaune, R D, Patrick, W H,Jr 1994A colorometric method for assaying dissolved oxygen loss from container-grown rice rootsAgron. J.86483487CrossRefGoogle Scholar
  33. Kuwana, T 1963Photonometric titration of dissolved oxygen and copper (II)Anal. Chem.3513981402CrossRefGoogle Scholar
  34. Lissner, J, Mendelssohn, I A, Anastsiou, C J 2003A method for cultivating plants under controlled redox intensities in hydroponicsAquat. Bot.7693108CrossRefGoogle Scholar
  35. Lombardi, J, Epp, M A, Chanton, J P 1997Investigation of the methyl fluoride technique for determining rhizosphere methane oxidationBiogeochemistry36153172CrossRefGoogle Scholar
  36. Lorenzen, J, Larsen, L H, Kjær, T, Revsbech, N P 1998Biosensor determination of the microscale distribution of nitrate, nitrate assimilation, nitrification, and denitrification in a diatom-inhabited freshwater sedimentAppl. Environ. Microb.6432643269Google Scholar
  37. Mckee, K L, Mendelssohn, I A, Hester, M W 1988Reexamination of pore water sulfide concentrations and redox potentials near the roots of Rhizophora Mangle and Avicennia germinans Am. J. Bot.7513521359CrossRefGoogle Scholar
  38. Mendelssohn, I, Postek, M 1982Elemental analysis of deposits on the roots of Spartina alterniflora LoiselAm. J. Bot.69904912CrossRefGoogle Scholar
  39. Pedersen, O, Sand-Jensen, K 1995Diel pulses of O2 and CO2 in sandy lake sediments inhabited by Lobelia dortmanna Ecology7615361545CrossRefGoogle Scholar
  40. Reddy, K R, D’Angelo, E M, DeBusk, T A 1989aOxygen transport through aquatic macrophytes: the role in wastewater treatmentJ. Environ. Qual.19261267CrossRefGoogle Scholar
  41. Reddy, K R, Patrick, W H,Jr, Lindau, C W 1989bNitrification–denitrification at the plant root–sediment interface in wetlandsLimnol. Oceanogr.3410041013CrossRefGoogle Scholar
  42. Roden, E E, Wetzel, R G 1996Organic carbon oxidation and␣suppressions of methane production by microbial Fe(III) oxide reduction in vegetated and unvegetated freshwater wetland sedimentsLimnol. Oceanogr.4117331748CrossRefGoogle Scholar
  43. Sand-Jensen, K, Prahl, C, Stokholm, H 1982Oxygen release from roots of submerged aquatic macrophytesOikos38349354Google Scholar
  44. Sorrell, B K, Dromgoole, F I 1987Oxygen transport in the submerged freshwater macrophyte Egeria densa Planch. I. Oxygen production, storage and releaseAquat. Bot.286380CrossRefGoogle Scholar
  45. Sorrell, B K, Armstrong, W 1994On the difficulties of measuring oxygen release by root systems of wetland plantsJ. Ecol.82177183CrossRefGoogle Scholar
  46. St-Cyr, L, Crowder, A A 1989Factors affecting iron plaque on the roots of Phragmites australis (Cav.) Trin ex SteudelPlant Soil1168593CrossRefGoogle Scholar
  47. Teal, J M, Kanwisher, J W 1966Gas transport in the marsh grass, Spaltina alterniflora J. Exp. Bot.17355361Google Scholar
  48. Tickle, K, Willkinson, F 1965Photoreduction of anthraquinone in isopropanolTrans. Faraday Soc.6119811990CrossRefGoogle Scholar
  49. Bodegom, P, Goudriaan, J, Leffelaar, P 2001A mechanistic model on methane oxidation in a rice rhizosphereBiogeochemistry55145177CrossRefGoogle Scholar
  50. Willkinson, F 1962Transfer of triplet state energy and the chemistry of excited statesJ. Phys. Chem.6625692574Google Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  1. 1.Department of Biology, Graduate School of Science and TechnologyChiba UniversityChibaJapan

Personalised recommendations