Advertisement

Plant and Soil

, Volume 276, Issue 1–2, pp 263–277 | Cite as

The Symbiotic Requirements of Different Medicago Spp. Suggest the Evolution of Sinorhizobium Meliloti and S. Medicae with Hosts Differentially Adapted to Soil pH

  • G. Garau
  • W.G. Reeve
  • L. Brau
  • P. Deiana
  • R.J. Yates
  • D. James
  • R. Tiwari
  • G.W. O’Hara
  • J.G. Howieson
Article

Abstract

Nitrogen fixing rhizobia associated with the Medicago L. genus belong to two closely related species Sinorhizobium medicae and S. meliloti. To investigate the symbiotic requirements of different Medicago species for the two microsymbionts, 39 bacterial isolates from nodules of eleven Medicago species growing in their natural habitats in the Mediterranean basin plus six historical Australian commercial inocula were symbiotically characterized with Medicago hosts. The bacterial species allocation was first assigned on the basis of symbiotic proficiency with M. polymorpha. PCR primers specific for 16S rDNA were then designed to distinguish S. medicae and S. meliloti. PCR amplification results confirmed the species allocation acquired in the glasshouse. PCR fingerprints generated from ERIC, BOXA1R and nif-directed RPO1 primers revealed that the Mediterranean strains were genetically heterogenous. Moreover PCR fingerprints with ERIC and BOX primers showed that these repetitive DNA elements were specifically distributed and conserved in S. meliloti and S. medicae, clustering the strains into two divergent groups according to their species. Linking the Sinorhizobium species with the plant species of origin we have found that S. medicae was mostly associated with medics well adapted to moderately acid soils such as M. polymorpha, M. arabica and M. murex whereas S. meliloti was predominantly isolated from plants naturally growing on alkaline or neutral pH soils such as M. littoralis and M. tornata. Moreover in glasshouse experiments the S. medicae strains were able to induce well-developed nodules on M. murex whilst S. meliloti was not infective on this species. This feature provides a very distinguishing characteristic for S. medicae. Results from the symbiotic, genotypic and cultural characterization suggest that S. meliloti and S. medicae have adapted to different Medicago species according to the niches these medics usually occupy in their natural habitats.

Keywords

acid adaptation Medicago spp. Sinorhizobium medicae S. meliloti symbiotic requirements 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Biondi, E G, Pilli, E, Giuntini, E, Roumiantseva, M L, Andronov, E E, Onichtchouk, O P, Kurchak, O N, Simarov, B V, Dzyubenko, N I, Mengoni, A, Bazzicalupo, M 2003Genetic relationship of Sinorhizobium meliloti and Sinorhizobium medicae strains isolated from Caucasian regionFEMS Microbiol. Lett.22020713CrossRefPubMedGoogle Scholar
  2. Bounejmate, M, Robson, A D 1992Differential tolerance of genotypes of Medicago truncatula to low pHAust. J. Agric. Res.43731737Google Scholar
  3. Brockwell, J, Hely, F W 1966Symbiotic characteristics of Rhizobium meliloti: an appraisal of the systematic treatment of nodulation and nitrogen fixation interactions between host and rhizobia of diverse originsAust. J. Agric. Res.17885899CrossRefGoogle Scholar
  4. Brundu, G, Camarda, I, Caredda, M, Garau, G, Maltoni, S, Deiana, P 2004A contribution to the study of the distribution of Medicago-Sinorhizobium symbiosis in Sardinia (Italy)Agricoltura Mediterranea1343348Google Scholar
  5. Brunel, B, Rome, S, Ziani, R, Cleyet-Marel, J C 1996Comparison of nucleotide diversity and symbiotic properties of Rhizobium meliloti populations from annual Medicago speciesFEMS Microbiol. Ecol.197182Google Scholar
  6. Bullard, G K, Roughley, R J, Pulsford, D J 2005Review of fifty years of the legume inoculant industry and inoculant quality control in Australia: 1953–2003Aust. J. Exp. Agric.45127140CrossRefGoogle Scholar
  7. Charman, N, Ballard, R A 2004Burr medic (Medicago polymorpha L.) selections for improved N2 fixation with naturalised soil rhizobiaSoil Biol. Biochem.3613311337CrossRefGoogle Scholar
  8. Bruijn, F J 1992Use of repetitive (repetitive extragenic palindromic and enterobacterial repetitive intergeneric consensus) sequences and the polymerase chain reaction to fingerprint the genomes of Rhizobium meliloti isolates and other soil bacteriaAppl. Environ. Microbiol.5821802187PubMedGoogle Scholar
  9. Eardly, B D, Materon, L A, Smith, N H, Johnson, D A, Rumbaugh, M D, Selander, R K 1990Genetic structure of natural populations of the nitrogen-fixing bacterium Rhizobium meliloti Appl. Environ. Microbiol.56187194PubMedGoogle Scholar
  10. Francis, C M, Gillespie, D J 1981Ecology and distribution of subterranean clover and Medicago spp. in SardiniaAustr. Plant Intro. Rev.131525Google Scholar
  11. Galibert, F, Finan, T M, Long, S R, Puhler, A, Abola, P, Ampe, F,  et al. 2001The composite genome of the legume symbiont Sinorhizobium meliloti Science293668672PubMedGoogle Scholar
  12. Gillespie, D J, McComb, J A 1991Morphology and distribution of species in the Medicago murex complexCan. J. Bot.6926552662Google Scholar
  13. Howieson, J G, Ewing, M A 1986Acid tolerance in the Rhizobium meliloti-Medicago symbiosisAust. J. Agric. Res.375564CrossRefGoogle Scholar
  14. Howieson, J G, Ewing, M A 1989Annual species of Medicago differ greatly in their ability to nodulate on acid soilsAust. J. Agric. Res.40843850CrossRefGoogle Scholar
  15. Howieson, J G, Ewing, M A, D’Antuono, M F 1988Selection for acid tolerance in Rhizobium meliloti Plant Soil105179188Google Scholar
  16. Howieson, J G, Loi, A, Carr, S J 1995Biserrula pelecinus L. – a legume pasture species with potential for acid, duplex soils which is nodulated by a unique root-nodule bacteriaAust. J. Agric. Res.469971009CrossRefGoogle Scholar
  17. Howieson, J G, Nutt, B, Evans, P 2000Estimation of host-strain compatibility for symbiotic N-fixation between Rhizobium meliloti, several annual species of Medicago and Medicago sativa Plant Soil2194955CrossRefGoogle Scholar
  18. Irwin, J A G, Lloyd, D L, Lowe, K F 2001Lucerne biology and genetic improvement – An analysis of past activities and future goals in AustraliaAust. J. Agric. Res.52699712CrossRefGoogle Scholar
  19. Jordan, D C 1984Family III. Rhizobiaceae Conn 1938, 321ALKrieg, N RHolt, J G eds. Bergey’s Manual of Systematic BacteriologyWilliams & WilkinsLondon234242Google Scholar
  20. Laguerre, G, Nour, S M, Macheret, V, Pascal Drouin, J S, Amarger, N 2001Classification of rhizobia based on nodC and nifH gene analysis reveals a close phylogenetic relationship among Phaseolus vulgaris symbiontsMicrobiology187981993Google Scholar
  21. Lesins, K A, Lesins, I 1979Genus Medicago (Leguminosae): A Taxogenetic StudyKluwer Academic PublishersDordrechtGoogle Scholar
  22. Niemann, S, Dammann-Kalinowski, T, Nagel, A, Puhler, A, Selbitschka, W 1999Genetic basis of enterobacterial repetitive intergenic consensus (ERIC)-PCR fingerprint pattern in Sinorhizobium meliloti and identification of S. meliloti employing PCR primers derived from an ERIC-PCR fragmentArch. Microbiol.1722230CrossRefPubMedGoogle Scholar
  23. Puckridge, D W, French, R J 1983The annual legume pasture in cereal-lay farming systems of Southern Australia: a reviewAgric. Ecosyst. Environ.9229267Google Scholar
  24. Richardson, A E, Viccars, L A, Watson, J M, Gibson, A H 1995Differentiation of Rhizobium strains using the polymerase chain reaction with random and directed primersSoil Biol. Biochem.27515524CrossRefGoogle Scholar
  25. Robson, A D 1969Soil factors affecting the distributionof annual Medicago speciesJ. Aust. Inst. Agric. Sci.35154167Google Scholar
  26. Rome, S, Brunel, B, Normand, P, Fernandez, M, Cleyet-Marel, J C 1996aEvidence that two genomic species of Rhizobium are associated with Medicago truncatula Arch. Microbiol.165285288CrossRefGoogle Scholar
  27. Rome, S, Cleyet-Marel, J C, Materon, L A, Normand, P, Brunel, B 1997Rapid identification of Medicago nodulating strains by using two oligonucleotide probes complementary to 16S rDNA sequencesCan. J. Microbiol.43854861PubMedCrossRefGoogle Scholar
  28. Rome, S, Fernandez, M P, Brunel, B, Normand, P, Cleyet-Marel, J C 1996bSinorhizobium medicae sp nov., isolated from annual Medicago sppInt. J. Syst. Bacteriol.46972980CrossRefGoogle Scholar
  29. Sanchez-Contreras, M, Lloret, X, Martin, M, Villacieros, M, Bonilla, I, Rivilla, R 2000PCR use of highly conserved DNA regions for identification of Sinorhizobium meliloti Appl. Environ. Microbiol.6636213623CrossRefPubMedGoogle Scholar
  30. Versalovic, J T, Koeuth, T, Lupski, J R 1991Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting bacterial genomesNucleic Acids Res.1968236831PubMedGoogle Scholar
  31. Versalovic, J, Schneider, M, Bruijn, F J, Lupski, J R 1994Genomic fingerprinting of bacteria using repetitive sequence-based polymerase chain reactionMeth. Cell. Mol. Biol.52540Google Scholar
  32. Zribi, K, Mhamdi, R, Huguet, T, Aouani, M E 2004Distribution and genetic diversity of rhizobia nodulating natural populations of Medicago truncatula in Tunisian soilsSoil Biol. Biochem.6903908Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • G. Garau
    • 1
  • W.G. Reeve
    • 2
  • L. Brau
    • 2
  • P. Deiana
    • 1
  • R.J. Yates
    • 2
  • D. James
    • 2
  • R. Tiwari
    • 2
  • G.W. O’Hara
    • 2
  • J.G. Howieson
    • 2
    • 3
  1. 1.Dipartimento di Scienze Ambientali Agrarie e Biotecnologie Agro-AlimentariUniversity of SassariSassariItaly
  2. 2.Centre for Rhizobium StudiesMurdoch UniversityMurdochAustralia
  3. 3.Department of AgricultureBaron-Hay Crt.South PerthAustralia

Personalised recommendations