Plant and Soil

, Volume 275, Issue 1–2, pp 77–91 | Cite as

Application of GMOs in the U.S.: EPA research & regulatory considerations related to soil systems



During the last 20 years recombinant biotechnology has resulted in the development of organisms with unique genetic compositions, some of which are for intentional release to the environment. While concerns have been raised that such organisms may be capable of inducing transient unintended environmental effects, longer-term perturbations to soil processes and non-target species effects have yet to be demonstrated. In parallel with the growth of the commercial biotechnology industry has come a significant growth in regulatory review processes intended to evaluate the risks of these GMO products. Under the Toxic Substances Control Act (TSCA), certain new microbial products that undergo pre-manufacture review are examined for human and environmental risks using data and other information received in accordance with the U.S. Environmental Protection Agency’s (EPA’s) “Points to Consider” guidance document. In the risk assessment process, carried out under the Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA) and the Federal Food, Drug and Cosmetic Act (FFDCA) authorities, EPA evaluates both microbial pesticide products and plants with pesticidal properties to determine if Federal safety standards are met. For all pesticide products, including genetically engineered pesticides, EPA receives testing of product composition and chemical properties, human health effects, environmental effects on non-target pests, and the fate of the pesticide in the environment. The EPA’s Office of Research and Development supports risk assessment research related to such GMO products. This paper focuses on relevant EPA research and regulatory examples related to soil effects considerations for GMOs.


Bacillus thuringiensis Burkholderia cepacia genetically modified organism (GMO) regulation of GMOs risk assessment transgenes transgenic crops 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bej, A K, Perlin, M, Atlas, R M 1991Effect of introducing genetically engineered microorganisms on soil microbial community diversityFEMS Microbiol. Ecol.86169176CrossRefGoogle Scholar
  2. Borkin, S 1982Notes on shifting distribution patterns and survival of immature Danaus plexxipus (Lepidoptera: Danaidae) on the food plant Asclepias syriaca Great Lakes Entomol.15199206Google Scholar
  3. Buscot F, Kaldorf M, Fladung M and Muhs H 2001 Establishment of mycorrhizas on rolC-transgenic aspen in a field trial. In ICOM3, Third International Conference onGoogle Scholar
  4. Mycorrhizas, Adelaide, Australia, July 10–13, 2001Google Scholar
  5. Cisar, C R, Spiegel, F W, TeBeest, D O, Trout, C 1994Evidence for mating between isolates of Colletrotrichum gloeosporioides with different host specificitiesCurr. Genet.25330335PubMedCrossRefGoogle Scholar
  6. Conner, A J, Glare, T, Nap, J 2003The release of genetically modified crops into the environment: Part II Overview of ecological risk assessmentPlant J.331946PubMedCrossRefGoogle Scholar
  7. Dale, P, Clarke, B, Fontes, E 2000Potential for the environmental impact of transgenic cropsNat. Biotechnol.20567574Google Scholar
  8. Di Giovanni, G, Watrud, L, Seidler, R, Widmer, F 1999Comparison of parental and transgenic alfalfa rhizosphere bacterial communities using Biolog GN metabolic fingerprinting and enterobacterial repetitive intergeneric consensus sequence-PCR (ERIC-PCR)Microbial Ecol.37129139Google Scholar
  9. Donegan, K K, Palm, C J, Fieland, V J, Porteous, L A, Ganio, L M, Schaller, D L, Bucao, L Q, Seidler, R J 1995Changes in levels, species and DNA fingerprints of soil microorganisms associated with cotton expressing the Bacillus thuringiensis var. kurstaki endotoxinAppl. Soil Ecol.2111124CrossRefGoogle Scholar
  10. Donegan, K, Schaller, D, Stone, J, Ganio, L, Reed, G, Hamm, P, Seidler, R 1996Microbial populations, fungal species diversity and plant pathogen levels in field plots of potato plant expressing the Bacillus thuringiensis va. tenebrionis endotoxinTransgenic Res.52535CrossRefGoogle Scholar
  11. Donegan, K, Seidler, R J, Doyle, J D, Porteous, L A, Di Giovanni, G D, Widmer, F, Watrud, L S 1999A field study with engineered alfalfa inoculated with recombinant Sinorhizobium meliloti: effects on the soil ecosystemJ. Appl. Ecol.36920936CrossRefGoogle Scholar
  12. Donegan, K, Seidler, R J, Fieland, V J, Schaller, D L, Palm, C J, Ganio, L M, Cardwell, D M, Steinberger, Y 1997Decomposition of genetically engineered tobacco under field conditions: persistence of the proteinase inhibitor I product and effects on soil microbial respiration and protozoa, nematode and microarthropod populationsJ. Appl. Ecol.34767777Google Scholar
  13. Doyle, J D, Short, K A, Stotzky, G, King, R J, Seidler, R J, Olsen, R H 1991Ecologically significant effects of Pseudomonas putida PPO301 (pRO103), genetically engineered to degrade 2,4-dichlorophenoxyacetate, on microbial populations and processes in soilCan. J. Microbiol.37682691PubMedGoogle Scholar
  14. Ellis, W R, Ham, G E, Schmidt, E L 1984Persistence and recovery of Rhizobium japonicum inoculum in a field soilAgron. J.76573576CrossRefGoogle Scholar
  15. Fox, J 2004USDA scrutinizes GM organism regulationsNat. Biotechnol.22254255PubMedGoogle Scholar
  16. Gebhard, K, Smalla, K 1999Monitoring field releases of genetically modified sugar beets for persistence of transgenic plant DNA and horizontal gene transferFEMS Microbiol.28261272Google Scholar
  17. Hellmich R, Siegfried B, Sears M, Stanley-Horne D, Matilla R, Spencer T, Bidne K, and Lewis L 2001 Monarch caterpillar sensitivity to Bacillus thuringiensis – purified protein and pollen. Proc. Natl. Acad. Sci., 10.1073/211297698Google Scholar
  18. Heungens, K, Parke, J 2000Zoospore homing and infection events: effects of the biocontrol bacterium Burkholderia cepacia AMMDRI on two oomycete pathogens of pea (Pisum sativum L.)Appl. Environ. Microbiol.6651925200PubMedCrossRefGoogle Scholar
  19. Hoffman, T, Golz, C, Schieder, O 1994Foreign gene sequences are received by a wild-type strain of Aspergillus niger after co-culture with transgenic higher plantsCurr. Genet.277076Google Scholar
  20. Hood, M A, Seidler, R J 1995Design of microcosms to provide data reflecting field trials of GEMsAkkermans, A D LVan Elsas, J DDe Bruijn, F J eds. Molecular Microbial Ecology ManualKluwer Academic PublishersDordrecht367381Google Scholar
  21. James, R, Miller, J C, Lighthart, B 1993Bacillus thuringiensis var kursatki affects a beneficial insect, the cinnabar moth (Lepidoptera: Arctiidae)J. Econ. Entomol.86334339Google Scholar
  22. Lipuma, J 1997Burkholderia cepacia: management issues and new insightsClin. Chest Med.19473486Google Scholar
  23. Lozzia, N 1999Biodiversity and structure of ground beetle assemblages (Coleoptera: Carabidae) in Bt corn and its effects on target insectsBoll. Zool. Agr. Bachic.313758Google Scholar
  24. Mahenthiralingham, E, Sayre, P 2003Burkholderia cepacia complexGeller, E eds. McGraw Hill Yearbook of Science and TechnologyMcGraw HillNew York4144Google Scholar
  25. McClung G and Sayre P 1994 Risk assessment for the release of recombinant rhizobia at a small-scale agricultural field site. In A Review of Ecological Assessment Case Studies from a Risk Assessment Perspective. pp. 2-1–2-35. US Environmental Protection Agency (EPA/630/R-94/003), Washington, DCGoogle Scholar
  26. Mendelsohn M, Kough J, Vaituzis Z and Matthews K 2003 Are Bt crops safe?Google Scholar
  27. The US EPA’s analysis of Bt crops finds they pose no significant risk to the environment or to human health. Nat. Biotechnol. 21, 1003–1009Google Scholar
  28. Miller, J C 1990Field assessment of the effects of a microbial pest control agent on nontarget LepidopteraAm. Entomol.36135139Google Scholar
  29. Moawad, H W, Ellis, W R, Schmidt, E L 1984Rhizosphere response as a factor in competition among three serogroups of indigenous Rhizobium japonicum for nodulation of field-grown soybeansAppl. Environ. Microbiol.47607612PubMedGoogle Scholar
  30. Modjo, H S, Hendrix, J W 1986The mycorrhizal fungus Glomus macrocarpum as a cause of tobacco stunt diseasePhytopathology76688691CrossRefGoogle Scholar
  31. National Academy of Sciences2004Safety of genetically engineered foods: Approaches to assessing unintended health effectsNational Academy PressWashington, DC261Google Scholar
  32. National Research Council2000Genetically modified pest-protected plants: Science and regulation. National Research CouncilNational Academy PressWashington, DC261Google Scholar
  33. National Research Council2001Ecological monitoring of genetically modified crops: A workshop summary. National Research CouncilNational Academy PressWashington, DC60Google Scholar
  34. National Research Council2002Environmental effects of transgenic plants: The scope and adequacy of regulation. National Research CouncilNational Academy PressWashington, DC342Google Scholar
  35. Neilsen, K 1998Horizontal gene transfer from transgenic plants to terrestrial bacteria – a rare event?FEMS Microbiol. Rev.2279103Google Scholar
  36. Nielsen, K, Van Elsas, J, Smalla, K 2000Transformation of Acinetobacter sp strain BD413(pFG4ΔnptII) with transgenic plant DNA in soil microcosms and effects of kanamycin on selection of transformantsAppl. Environ. Microbiol.6612371242PubMedCrossRefGoogle Scholar
  37. Nuessly G and Hentz M 1999 Comparison of insect populations, damage and yield between commercial plantings of standard at Bt-enhanced sweet corn: (Brown’s Farm Road Trial, Double D Main Farm Trial, Hundley Farm Trial, Pahokee, FL Trial), University of Florida, IFAS Everglades Research and Education Center, Belle Glade, FL 33430Google Scholar
  38. Obrycki, J 1997Effects of Cry9C corn on predatory non-target beneficial insects and endangered species: determination of predatory non-target beneficial insect study/pollen production studyDepartment of Entomology, Iowa State UniversityAmes, IA88(Project ID 96QZM004)Google Scholar
  39. Orr, D, Landis, D 1997Oviposition of European corn borer (Lepidoptera: Pyralidae) and impact of natural enemy populations in transgenic versus isogenic cornJ. Econ. Entomol.90905909Google Scholar
  40. Palm, C J, Donegan, K, Harris, D L, Seidler, R J 1994Quantitation in soil ofBacillus thuringiensis var. kurstaki delta-endotoxin from transgenic plantsMol. Ecology3145451Google Scholar
  41. Palm, C J, Schaller, D L, Donegan, K, Seidler, R J 1996Persistence in soil of transgenic plant produced Bacillus thuringiensis var. kurstaki endotoxinCan. J. Microbiol.4212581262CrossRefGoogle Scholar
  42. Pfender W F, Maggard S P and Watrud L S 1995 Soil microbial activity and plant/microbe symbioses as indicators for ecological effects of bioremediation biotechnology. In Proceedings of the Biotech Risk Assessment Symposium. pp. 269–279. University of Maryland Biotech Inst., College Park, MDGoogle Scholar
  43. Pilcher, C, Rice, M, Obrycki, J, Lewis, L 1997Field and laboratory evaluations of Bacillus thuringiensis corn on secondary Lepidopteran pests (Lepidoptera: Noctuidae)J. Econ. Entomol.90669678Google Scholar
  44. Pleasants, J, Hellmich, R, Dively, G, Sears, M, Stanley-Horne, D, Matilla, H, Foster, J, Clark, T, Jones, G 2001Corn pollen deposition on milkweeds in and near corn fieldsProl. Natl. Acad. Sci. USA981191911924Google Scholar
  45. Saxena, D, Flores, S, Stotzky, G 1999Insecticidal toxin in root exudates from Bt cornNature402480PubMedGoogle Scholar
  46. Saxena, D, Stotzky, G 2001aBacillus thuringiensis (Bt) toxin released from root exudates and biomass of Bt corn has no apparent effect on earthworms, nematodes, protozoa, bacteria, and fungi in soilSoil Biol. Biochem.3312251230CrossRefGoogle Scholar
  47. Saxena, D, Stotzky, G 2001bBacillus thuringiensis corn has a higher lignin content than non-Bacillus thuringiensis cornAm. J. Bot.8817041706Google Scholar
  48. Sayre, P 1997Risk assessment of a recombinant biosensorSayler, GLSanseverino, JDavis, K eds. Biotechnology in the Sustainable EnvironmentPlenum PressNew York269279Google Scholar
  49. Schluter, K, Futterer, J, Porykus, I 1995“Horizontal” gene transfer from a transgenic potato line to a bacterial pathogen (Erwinia chrysanthemi) occurs – if at all – at an extremely low frequencyBiotechnology1310941098PubMedGoogle Scholar
  50. Seidler, R J 1992Evaluation of methods for detecting ecological effects from genetically engineered microorganisms and microbial pest control agents in terrestrial systemsBiotechnol. Adv.10149178PubMedCrossRefGoogle Scholar
  51. Seidler, R J 1994Evaluation of methods for detecting ecological effects from genetically engineered microorganisms and microbial pest control agents in terrestrial systemsBazin, M JLynch, J M eds. Environmental Gene Release: Models, Experiments and Risk AssessmentChapman and HallLondon99122Google Scholar
  52. Seidler R J and Settel J 1991 Eds. The use and development of environmentally controlled chambers (mesocosms) for evaluating biotechnology products. U.S. Environmental Protection Agency (EPA/600/9–91/013), Washington, DC, 220 ppGoogle Scholar
  53. Seidler, R J, Walter, M V, Hern, S, Fieland, V, Schmedding, D, Lindow, S E 1994Measuring the dispersal and reentrainment of recombinantPseudomonas syringae at California test sitesMicrob. Releases2209216Google Scholar
  54. Short, K A, Seidler, R J, Olsen, R H 1990Survival and degradative capacity of Pseudomonas putida induced or constitutively expressing plasmid-mediated degradation of 2,4-dichlorophenoxyacetate in soilCan J. Microbiol.36821826CrossRefGoogle Scholar
  55. Short, K A, Doyle, J D, King, R J, Seidler, R J 1991Effects of 2,4-dichlorophenol, a metabolite of a genetically engineered bacterium, and 2,4-dichlorophenoxyacetate on some microorganism-mediated ecological processes in soilJ. Appl. Microbiol.57412418Google Scholar
  56. Sims, S, Holden, L 1996Insect bioassay for determining soil degradation of Bacillus thuringiensis subsp. kurstakiCry1Ab protein in corn tissueEnviron. Entomol.25659664Google Scholar
  57. Steffan, R, Sperry, K, Walsh, M, Vainberg, S, Condee, C 1999Field-scale evaluation of in situ bioaugmentation of chlorinated solvents in groundwaterEnviron. Sci. and Technol.3327712781Google Scholar
  58. Stanley-Horn, D, Matilla, H, Sears, M, Dively, G, Rose, R, Hellmich, R, Lewis, L 2001Assessing impact of Cry1Ab-expressing corn pollen on monarch butterfly larvae in field studiesProc. Natl. Acad. Sci.981193111936PubMedCrossRefGoogle Scholar
  59. Stotzky, G 2000Persistence and biological activity in soil of insecticidal proteins from Bacillus thuringiensis and of bacterial DNA bound on clays and humic acidsJ. Environ. Qual.29691705CrossRefGoogle Scholar
  60. Tapp, H, Stotzky, G 1998Persistence of insecticidal toxin from Bacillus thuringiensis subsp. kurstaki in soilSoil Biol. Biochem.30471476CrossRefGoogle Scholar
  61. Taylor, O, Wassenaar, L, Hobson, K 1999Tracking monarchs with isotopesTaylor, O R eds. Monarch Watch: 1997 Season SummaryAllen PressKansas235247Google Scholar
  62. Tiedje, J M, Colwell, R K, Grossman, Y L, Hodson, R E, Lenski, R N, Mack, R N, Regal, P J 1989The planned introduction of genetically engineered organisms: ecological considerations and recommendationEcology70298315Google Scholar
  63. Thatoi, H N, Sahu, S, Misra, A K, Padhi, G S 1993Comparative effect of VAM inoculation on growth, nodulation and rhizobium population of subabul (Leucaena leucocephala (Lam) de Wit.) grown in iron mine waste soilIndian For.119481489Google Scholar
  64. Urquhart, F 1960The Monarch ButterflyUniversity of Toronto PressOntario, Canada361Google Scholar
  65. USDA – NASS 1997 U.S. Department of Agriculture, National Agricultural Statistics Service, Census of Agriculture Volume 1: Part 51, Chapter 2Google Scholar
  66. Vandamme, P, Henry, D, Coenye, T, Nzula, S, Vancanneyt, M, LiPuma, J, Speert, D, Govan, J, Mahenthiralingam, E 2000Burkholderia anthina sp. nov. and Burkholderia pyrrocinina, two additional Burkholderia cepacia complex bacteria, may confound results of new molecular diagnostic toolsFEMS Immunol. Med. Mic.140217Google Scholar
  67. Vierheilig, H, Alt, M, Lange, J, Gut-Rella, M, Wiemke, A, Boller, T 1995Colonization of transgenic tobacco constitutively expressing pathogenesis-related proteins by the vesicular-arbuscular mycorrhizal fungus Glomus mosseae Appl. Environ. Microbiol.830313034Google Scholar
  68. Watrud, L S 2000Genetically Engineered Plants in the Environment – Applications and IssuesRao, N SDommergues, Y R eds. Microbial Interactions in Agriculture and Forestry (Vol. 2).Science Publishers Inc.Enfield6181Google Scholar
  69. Watrud, L S, Seidler, R J 1998Nontarget ecological effects of plant, microbial, and chemical introductions to terrestrial systemsHuang, P M eds. Soil Chemistry and Ecosystem Health.Soil Science Society of America MadisonWI313340Google Scholar
  70. Widmer, F, Seidler, R J, Donegan, K, Reed, G L 1997Quantification of transgenic plant marker gene persistence in the fieldMol. Ecol.617CrossRefGoogle Scholar
  71. Widmer F, Porteous L A, Donegan K, Doyle J D and Seidler R J 2000. Polyphasic approach to field risk assessments: application to transgenic alfalfa inoculated with recombinant Sinorhizobium meliloti with enhanced N2-fixing abilities. In Proceedings 5th International Symposium, The Biosafety Results of Field Tests of Genetically Modified Plants and Microorganisms. Ed. J Schiemann. pp. 272–278. Arno Brynda, BerlinGoogle Scholar
  72. Wolfenbarger, L L, Phifer, P R 2000The ecological risks and benefits of genetically engineered plantsScience29020882093PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  1. 1.Office of Pollution Prevention and ToxicsU.S. Environmental Protection AgencyWashington, DCUSA
  2. 2.Western Ecology DivisionU.S. Environmental Protection Agency, National Health and Environmental Effects Research LaboratoryCorvallis, BendUSA

Personalised recommendations