Plant and Soil

, Volume 272, Issue 1–2, pp 223–232 | Cite as

Antimicrobial proteins from cowpea root exudates: inhibitory activity against Fusarium oxysporum and purification of a chitinase-like protein

  • F. M. Nóbrega
  • I. S. Santos
  • M. Da. Cunha
  • A. O. Carvalho
  • V. M. Gomes


Plants exude a variety of substances through their external surfaces and from germinating seeds, some of which have an inhibitory action against plant pathogens. The aim of this study was the investigation and characterization of defense proteins present in exudates from roots of cowpea seedlings (Vigna unguiculata (L.) Walp.). Root exudates were collected from seedlings that were grown hydroponically in three different media, including, 100 mM sodium acetate buffer pH 4.5, water pH 6.0 and 100 mM sodium phosphate buffer pH 7.5. The proteins from these exudates were analyzed by SDS–PAGE and SDS–Tricine–PAGE and the presence of antimicrobial proteins in the exudates was investigated by immunological and enzymatic assays. Results showed that roots from cowpea seedlings contained β-1,3-Glucanases, chitinases and lipid transfer proteins (LTPs), all of which may potentially function as plant defense proteins. Immunolocalization of one of these proteins, chitinase, revealed its presence in the xylem cell wall vessel elements. These exudates also demonstrated an inhibitory effect on the growth of the fungus, Fusarium oxysporum, in vitro. The results suggest that plant roots may exude a variety of proteins that may function to repress the growth of root pathogenic fungi.


chitinase defense proteins exudation root Vigna unguiculata 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agrios G N 1997 How plants defend themselves against pathogens. In Plant Pathology. 3rd edn. pp. 97–115. Academic Press, Inc., London.Google Scholar
  2. Allona, I, Collada, C, Casado, R, PazAres, J, Aragoncillo, C 1996Bacterial expression of an active class Ib chitinase from Castanea sativa cotyledonsPlant Mol. Biol.3211711176PubMedGoogle Scholar
  3. Arlorio, M, Ludwing, A, Boller, T, Bonfante, P 1992Inhibition of fungal growth by plant chitinase and β-1,3-glucanaseProtoplasma1713443Google Scholar
  4. Barbour, W M, Hatterman, D R, Stacey, G 1991Chemotaxis of Bradyrhizobium japonicum to soybean exudatesAppl. Environ. Microbiol.5726252639Google Scholar
  5. Bertin, C, Yang, X, Weston, L A 2003The role of root exudates and allelochemicals in the rhizospherePlant Soil2566783Google Scholar
  6. Bradford, M M 1976A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing principle of dye bindingBiochemistry72248254PubMedGoogle Scholar
  7. Broekaert, W F, Terras, F R G, Cammue, B P A, Vanderleyden, J 1990An automated quantitative assay for fungal growth inhibitionFEMS Microbiol. Lett.695560Google Scholar
  8. Brunner, F, Stintzi, A, Fritig, B, Legrand, M 1998Substrate of tobacco chitinasesPlant J.14225234PubMedGoogle Scholar
  9. Burketova, L, Stillerova, K, Feltlova, M 2003Immunohistological localization of chitinase and beta-1,3-glucanase in rhizomania-diseased and benzothiadiazole treated sugar beet rootsPhysiol. Mol. Pant Pathol.634754Google Scholar
  10. Carlile M J, Watkinson S C and Gooday G W (2001). Fungal cells and vegetative growth. In The Fungi. pp. 85–184. Academic Press, Inc., LondonGoogle Scholar
  11. Carvalho, A O, Machado, O L T, Da Cunha, M, Santos, I S, Gomes, V M 2001Antimicrobial peptides and immunolocalization of a LTP in Vigna unguiculata seedsPlant Physiol. Biochem.39137146Google Scholar
  12. Datta S K, Muthukrishnan S 1999. Plant chitinases. In Pathogenesis-Related Proteins in Plants. pp 77–105. CRC Press LLC, Boca Raton, FL.Google Scholar
  13. Fink, W, Lienfland, M, Mendgen, K 1988Chitinases and β-1,3-Glucanases in the apoplastic compartment of oat leaves (Avena sativa L.)Plant Physiol.88270275Google Scholar
  14. Gijzen, M, Kuflu, K, Qutob, D, Chernys, J T 2001Class I chitinase from soybean seed coatJ. Exp. Bot.5222832289PubMedGoogle Scholar
  15. Gomes, V M, Xavier-Filho, J 1994Biochemical defences of plantsArq. Biol. Tecnol.37371383Google Scholar
  16. Gomes, V M, Oliveira, A E A, Xavier-filho, J 1996A chitinase and a β-1,3-Glucanase isolated from the seeds of cowpea (Vigna unguiculata L. Walp.) inhibit the growth of fungi and insect pests of the seedJ. Sci. Food Agric.728690Google Scholar
  17. Gomes, V M, Mosqueda, M-I, Blanco-Labra, A, Sales, M P, Fernandes, K V S, Cordeiro, R A, Xavier-Filho, J 1997Vicilin Storage Protein from Vigna ungiculata (Legume) seeds inhibit fungal growthJ. Agric. Food Chem.4541104115Google Scholar
  18. Hackman, R H, Goldberg, M 1964New substrates for use with chitinasesAnal. Biochem.8397401Google Scholar
  19. Hallak, A M G, Davide, L C, Souza, I F 1999Effects of Sorghum (Sorghum bicolor L.) root exudates on the cell cycle of the bean plant (Phaseolus vulgaris L.) rootGen. Mol. Biol.229599Google Scholar
  20. Isobe, K, Tateishi, A, Nomura, K, Inoue, H, Tsuboki, Y 2001Flavonoids in the extract and exudate the roots of leguminous cropsPlant Prod. Sci.4278279Google Scholar
  21. Ji, C, Kuć, J 1996Antifungal activity of cucumber β-1,3-Glucanase and chitinasePhysiol. Mol. Plant Pathol.49257265Google Scholar
  22. Jung, H W, Kim, W, Hwang, B K 2003Three pathogen-inducible genes encoding lipid transfer protein from pepper are differentially activated by pathogens, abiotic and environmental stressesPlant Cell Environ.26915928PubMedGoogle Scholar
  23. Kader, J-C 1996Lipid-transfer protein in plants, Annu Rev. Plant Physiol.Plant Mol. Biol.47627654Google Scholar
  24. Laemmili, U K 1970Cleavage of structural proteins during the assembly of the head of bacteriophage T4Nature227680685PubMedGoogle Scholar
  25. Lam, S K, Ng, T B 2001Isolation of a small chitinase-like antifungal protein from Panax notoginseng (sanchi ginseng) rootsInt. J. Biochem. Cell Biol.33287293PubMedGoogle Scholar
  26. Leah, R, Tommerup, H, Svendsen, I, Mundy, J 1991Biochemical and molecular characterization of three barley seed proteins with antifungal propertiesJ. Biol. Chem.26615641573PubMedGoogle Scholar
  27. May, P H, Teixeira, S M, Santana, C A 1988Cowpea production and economic importance in brazilWatt, E EAraujo, J P P eds. Cowpea Research in BrazilIITA/EMBRAPAIbadan, Nigeria3162Google Scholar
  28. Nelson, N 1944A photometric adaptation of the Somogy method of determination of glucoseJ. Biol. Chem.153375380Google Scholar
  29. Netzly, D H, Butler, L G 1986Root of sorghum exude hydrophobic droplets containing biologically active componentsCrop Sci.26775778Google Scholar
  30. Nielsen, K K, Jorgensen, P, Mikkelsen, J D 1994Antifungal activity of sugar beet chitinase against Cercospora beticola: an autoradiographyc study on cell wall degradationPlant Pathol.43979986Google Scholar
  31. O’Brien, M, Colwell, R R 1987A rapid test for chitinase activity that uses 4-methylumberiferyl-N-acetyl-d-glucosamineAppl. Environ. Microbial.717181720Google Scholar
  32. Punja, Z K, Zhang, Y-Y 1993Plant chitinase and their roles in resistance to fungal diseaseJ. Nematol.25526540Google Scholar
  33. Pyee, J, Yu, H, Kolattukudy, P E 1994Identification of a lipid transfer protein as the major protein in the surface wax broccoli (Brassica oleracea) leavesArch. Biochem. Biophys.311460468PubMedGoogle Scholar
  34. Radhajeyalakshmi, R, Meena, B, Thangavelu, R, Deborah, S D, Vidhyasekaran, P, Velazhahan, R 200045-kDa chitinase purified from pearl millet (Pennisetum glaucum (L.) R. Br) shows antifungal activityJ. Plant Dis. Pro.107605616Google Scholar
  35. Recorbet, G, Bestel-Corre, G, Dumas-Gaudot, E, Gianinazzi, S, Alabouvette, C 1998Differential accumulation of beta-1,3-glucanase and chitinase isoforms in tomato roots in response to colonization by either pathogenic or non-pathogenic strains of Fusarium oxysporumMicrobiol. Res.153257263Google Scholar
  36. Regente, M C, La Canal, L 2000Purification, characterization and antifungal properties of a lipid transfer protein from sunflower (Heliantus annuns) seedsPhysiol. Plantarum110158163Google Scholar
  37. Santos, I S, Da Cunha, M, Machado, O L T, Gomes, V M 2004A chitinase from Adenanthera pavoninaL.seeds: purification, characterization and ImmunolocalizationPlant Sci.16712031210Google Scholar
  38. Sales, M P, Gerhardt, I S, Grossi-de-Sá, F, Xavier-Filho, J 2000Do legume storage proteins play a role in Defending seeds against bruchids?Plant Physiol.124512522Google Scholar
  39. Schagger, H, Von Jagow, G 1987Tricine–sodium dodecylsulfate polyacrylamide gel eletrophoresis for separation of proteins in the range from 1 to 100 kDaAnal. Biochem.166368379CrossRefPubMedGoogle Scholar
  40. Shewry, P R, Lucas, J A 1997Plant proteins that confer resistance to pest and pathogensAdv. Bot. Res.26135192Google Scholar
  41. Singh, S R, Rachie, K O 1985Cowpea, Research, Production and UtilizationJohn Wiley & SonsChichester460Google Scholar
  42. Somogyi, M 1952Notes on sugar determinationJ. Biol. Chem.1951923PubMedGoogle Scholar
  43. Towbin, H, Stachelin, T, Gordon, J 1979Electrophoretic transfer of protein from polyacrylamide gels to nitrocellulose sheets: procedure and some applicationsProc. Natl. Acad. Sci. USA17643504354Google Scholar
  44. Vannini, A, Caruso, C, Leonardi, L, Rugini, E, Chiarot, E, Ceporale, C, Buonocore, V 1999Antifungal properties of chitinases from Castanea sativa against hypovirulent strain of the chestnut blight fungus Cryphonectia parasiticaPhysiol. Mol. Plant Pathol.552931Google Scholar
  45. Xavier-Filho, J, Campos, F A P, Ary, M B, Silva, C P, Carvalho, M M M, Macedo, M L R, Lemos, F J A, Grant, G 1989Poor correlation between the levels of proteinase inhibitors found in seeds of different cultivars of cowpea (Vigna unguiculata) and the resistance/susceptibility to predation by Callosobruchus maculatusJ. Agric. Food Chem.3711391143Google Scholar
  46. Xavier-Filho, J 1991The resistance of seeds of cowpea (Vigna unguiculata) to the cowpea weevil (Callosobruchus maculatus)Mem. Inst. Oswaldo Cruz867577PubMedGoogle Scholar
  47. Xavier-Filho, J, Sales, M P, Fernandes, K V S, Gomes, V M 1996The resistance of cowpea (Vigna unguiculata) seeds to the cowpea weevil (Callosobruchus maculatus) is due to the association of variant vicilins (7S storage proteins) to chitinous structures in insect’s midgutArq. Biol. Technol.39693699Google Scholar
  48. Yeboah, N A, Arahira, M, Nong, V H, Zhang, D, Kadokura, K, Watanabe, A, Fukazawa, C 1998A class III acids endochitinase is especifically expressed in the developing seeds of soybean (Glycine max (L.) Merr.). Plant MolBiol.36407415Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • F. M. Nóbrega
    • 1
  • I. S. Santos
    • 1
  • M. Da. Cunha
    • 1
  • A. O. Carvalho
    • 1
  • V. M. Gomes
    • 1
  1. 1.Laboratório de Fisiologia e Bioquímica de Microrganismos, Centro de Biociências e BiotecnologiaUniversidade Estadual do Norte FluminenseRio de JaneiroBrazil

Personalised recommendations