Advertisement

Plant and Soil

, Volume 271, Issue 1–2, pp 189–203 | Cite as

Porosity and available water of temporarily waterlogged soils in a Quercus robur (L.) declining stand

  • Caroline Vincke
  • Bruno Delvaux
Article

Abstract

Pedunculate oak (Quercus robur L.) is particularly sensitive to decline in clayey soils presenting a high-perched temporary water table. These soils induce two successive constraints in one-year cycle: water excess (and hypoxy) in winter and early spring, and water shortage in summer (water stress being more restrictive to oak). We determined the porosity and water properties of temporarily waterlogged clayey soils supporting forest stands of decliningQuercus robur trees in a 101 yr-old oak stand in Belgium (50°06′N, 4°16′E). Roots unevenly colonized the soil down to 1.6 m: fine roots (diameter < 5 mm) were mostly distributed on the surface horizons (0–0.3 m) and around 1.3 m deep, despite dense clayey horizons appearing at 0.35 m depth. Clay content below this depth reached 46–51. Illite and vermiculite were the dominant clay minerals. The clayey horizons exhibited marked shrink–swell properties: bulk density at 30 kPa increased from 1.41 to 1.88 g cm−3 from the surface to 2 m depth. There was also evidence of hypoxic conditions caused by water saturation of pore space in the rooting zone from October to mid-April. Extractable water (EW), calculated between moisture tensions of 5 and 1600 kPa was 152.8 mm. The level of perched temporary water table strongly depended on the seasonal rhythm of water uptake by trees and on the shrink–swell behaviour of soil.

Keywords

expansible clays oak decline porosity water content waterlogged soils water table 

Abbreviations

EW

Extractable water (mm)

FC

Field capacity

MT

Moisture tension (kPa)

PET

Potential evapotranspiration (mm)

REW

Relative extractable water

W

Gravimetric soil water content (g g−1)

WP

Wilting point

Ψ0

Predawn leaf water potential (kPa)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abrams, MD. 1990Adaptations and responses to drought in Quercus sp. of North AmericaTree Physiol.7227238PubMedGoogle Scholar
  2. Ackermann, J., Hartmann, G. 1992Crown damage survey in oak stands of Lower Saxony by CIR aerial photography in 1988/89Forst und Holz.47452460Google Scholar
  3. Aussenac, G., Guehl, JM. 1994Dépérissement et accidents climatiquesRev. For. Fr.46458470Google Scholar
  4. Badeau, V, Dambrinne, E., Walter, C. 1999Propriétés des sols forestiers français: résultats du premier inventaire systématiqueEtude et Gestion des Sols6165180Google Scholar
  5. Baize D., Jabiol B. (1995). Guide pour la description des sols. INRA. p. 375Google Scholar
  6. Bastet G 1999 Estimation des propriétés de rétention en eau des sols à l’aide de fonctions de pédotransfert: développement de nouvelles approches. Thèse de Doctorat, Université d’Orléans. 193 ppGoogle Scholar
  7. Becker, M., Lévy, G. 1982Le dépérissement du chêne en forêt de TronçaisLes causes écologiques. Ann. For. Sci.39439444Google Scholar
  8. Becker, M., Lévy, G. 1986Croissance radiale comparée de chênes adultes (Q. robur L. et Q. petraea (Matt.) Liebl.) sur sol hydromorphe acide: effet du drainageActa Oecologia. Oecol. Plant.7123143Google Scholar
  9. Belgrand M. (1983). Comportement de jeunes plants feuillus (chêne pédonculé, chêne rouge, chêne sessile, hêtre) sur substrat ennoyé. Adaptations racinaires. Application à la mise en valeur forestière des pseudogley. Thèse, INRA Paris-GrignonGoogle Scholar
  10. Bernier, PY, Bréda, N, Granier, A, Raulier, F., Mathieu, F. 2001Validation of a canopy gas exchange model and derivation of a soil water modifier for transpiration for sugar maple (Acer saccharum Marsch.) using sap flow density measurementsFor. Ecol. Man.56112Google Scholar
  11. Bielders, CL, De Backer, LW., Delvaux, B. 1990Particle density of volcanic soils as measured with a gas pycnometerSoil Sci. Soc. Am. J.54822826Google Scholar
  12. Black, TA. 1979Evapotranspiration from Douglas-fir stands exposed to soil water deficitsWater Resour. Res.15164170Google Scholar
  13. Brahy, V, Deckers, J., Delvaux, B. 2000Estimation of soil weathering stage and acid neutralizing capacity in a toposequence Luvisol-Cambisol on loess under deciduous forest in BelgiumEur. J. Soil Sc.51113Google Scholar
  14. Bréda N. (1994). Analyse du fonctionnement hydrique des chênes sessile et pédonculé en conditions naturelles; effets des facteurs du milieu et de l’éclaircie. Thèse, INRA Nancy IGoogle Scholar
  15. Bréda, N, Cochard, H, Dreyer, E., Granier, A. 1993Water transfer in a mature oak stand (Quercus petraea): seasonal evolution and effects of a severe droughtCan. J. For. Res.2311361143Google Scholar
  16. Bréda, N, Granier, A., Aussenac, G. 1995Effects of thinning on soil and tree water relations, transpiration and growth in an oak forest (Quercus petraea (Matt.) Liebl.)Tree Physiol15295306PubMedGoogle Scholar
  17. Bréda, N, Granier, A, Barataud, F., Moyne, C. 1995Soil water dynamics in an oak standPlant and Soil1721727Google Scholar
  18. Bréda, N, Lefèvre, Y., Badeau, V. 2002Réservoir en eau des sols forestiers tempérés: spécificité et difficultés d’évaluationLa Houille blanche32432Google Scholar
  19. Bruand, A, Duval, O, Gaillard, H, Darthout, R., Jamagne, M. 1996Variabilité des propriétés de rétention en eau des sols: importance de la densité apparenteEtude et Gestion des sols.32740Google Scholar
  20. Bruand, A., Prost, R. 1987Effect of water content on the fabric of the soil material: an experimental approachJ. Soil Sci.38461472Google Scholar
  21. Bruand A, Tessier D., Baize D. (1988). Contribution à l’étude des propriétés de rétention en eau des sols argileux: importance de la prise en compte de l’organisation de la phase argileuse. C.R. Acad. Sci. Paris 307, Série II, 1937–1941Google Scholar
  22. Bruand A., Zimmer D 1992 Relation entre la capacité d’échange cationique et le volume poral dans les sols argileux: incidences sur la morphologie des assemblages élémentaires. C.R. Acad. Sci. Paris 315, Série II, 223–229Google Scholar
  23. Büttner, V., Leuschner, Ch. 1994Spatial and temporal patterns of fine roots abundance in a mixed oak-beech forestFor. Ecol. Man.701121Google Scholar
  24. Callaway, RM. 1990Effects of soil water distribution on the lateral development of three species of California oaksAm. J. Bot.7714691475Google Scholar
  25. Cermák, J., Práx, A. 2001Water balance of a Southern Moravian floodplain forest under natural and modified soil water regimes and its ecological consequencesAnn. For. Sci.581529Google Scholar
  26. Chao, TT., Sanzolone, RF. 1992Decomposition techniquesJ. Geochem. Explor.4465106Google Scholar
  27. Chaney W R 1981 Sources of water. InWater Deficits and Plant Growth. Woody Plant Communities, Vol. VI. Ed. T.T. Koslowski. Academic Press, NY. pp. 1–47Google Scholar
  28. Cochard H 1988 Utilisation d’un système de type “enceinte fermée” pour l’estimation de la transpiration journalière d’un sous-bois de pin maritime (Pinus pinaster Ait.). DEA Ecologie végétale, 37 ppGoogle Scholar
  29. Cochard, H, Bréda, N, Granier, A., Aussenac, G. 1992Vulnerability to air embolism of three European oak species (Quercus petraea (Matt.) Liebl., Q. pubescensWilld,Q.␣robur L.). AnnSci. For.49225233Google Scholar
  30. Crombie, DS, Tippett, JT., Hill, TC. 1988Dawn water potential and root depth of trees and understorey species in south-western AustraliaAust. J. Bot.36621631Google Scholar
  31. Curmi, P. 1988Structure, espace poral du sol et fonctionnement hydriqueAnalyse de quelques cas concrets. Sci. du Sol.23203214Google Scholar
  32. Dawson, TE. 1996Determining water use by trees and forests from isotopic, energy balance and transpiration analyses: the roles of tree size and hydraulic liftTree Physiol.16263272PubMedGoogle Scholar
  33. Delatour, C. 1983Biologie et forêtLes dépérissements des chênes en Europe. Rev. For. Fr.35265282Google Scholar
  34. Delvaux, B., Guyot, Ph. 1989Caractérisation de l’enracinement du bananier au champIncidences sur les relations sol-plante dans les bananeraies intensives de Martinique. Fruits44633647Google Scholar
  35. Dorel, M, Roger-Estrade, J, Manichon, H., Delvaux, B. 2000Porosity and soil water properties of Caribbean volcanic ash soilsSoil Use Manage.16133140Google Scholar
  36. Ehleringer, JR., Dawson, TE. 1992Water uptake by plants: perspectives from stable isotope compositionPlant, Cell Environ.1510731082Google Scholar
  37. Epron, D., Dreyer, E. 1993Photosynthesis of oak leaves under water stress: maintenance of high photochemical efficiency of photosystem II and occurrence of non-uniform CO2 assimilationTree Physiol.13107117PubMedGoogle Scholar
  38. FAO, 1998 ISSS Working Group Reference Base. World Reference Base for Soil Resources: Keys to Reference Soil Groups of the World, World Soil Resource Report No.84, FAO, Rome. 88 ppGoogle Scholar
  39. Galoux, D., Dutrecq, A. 1990Le dépérissement du chêneForêt Wallonne.738Google Scholar
  40. Granier, A. 1985Une nouvelle méthode pour la mesure du flux de sève brute dans le tronc des arbresAnn. For. Sci.42193200Google Scholar
  41. Granier, A. 1987Mesure du flux de sève brute dans le tronc du Douglas par une nouvelle méthode thermiqueAnn. For. Sci.44114Google Scholar
  42. Hamilton, GJ., Christie, JM. 1971Forest management tables (metric) Forestry commissionBooklet 34LondonGoogle Scholar
  43. Hanson, PJ., Weltzin, JF. 2000Drought disturbance from climate change: response of United States forestsSci. Total. Environ.262205220PubMedGoogle Scholar
  44. Herbillon A J 1986 Chemical estimation of weatherable minerals present in the diagnostic horizons of low activity clay soils. In Proceedings of the 8th International Classification Workshop: Classification, Characterization and Utilization of Oxisols. Part I. Ed. Beinroth, M N Camargo and H Eswaran. pp. 39–48. EMBRAPA, Rio de JaneiroGoogle Scholar
  45. Holmes, JW. 1955Water sorption and swelling of clay blocksJ. Soil Sci.6200208Google Scholar
  46. Jamagne, M, Bétrémieux, R, Bégon, JC., Mori, A. 1977Quelques données sur la variabilité dans le milieu naturel de la réserve en eau des solsBull. Tech. Inf.324–325627641Google Scholar
  47. Kämpf N, Scheinost AC., Schulze DG. (2000). Oxide minerals. In: Sumner ME. (eds). Handbook of Soil Science. CRC Press LCC, Boca Raton, FL, pp. F125–F168Google Scholar
  48. Kitigawa, Y. 1976Specific gravity of allophane and volcanic ash soil determined with a pycnometerSoil Sci. Plant Nutr.22199202Google Scholar
  49. Landmann G, Becker M, Delatour C, Dreyer E., Dupouey J-L 1993 Oak dieback in France: historical and recent records, possible causes, current investigations. Rundgesprache der Kommission für Okologie, Bd. 5 Zustand und Gefährdung der Laubwälder. S. 97–114Google Scholar
  50. Lebourgeois, F., Jabiol, B. 2002Enracinements comparés du chêne sessile, du chêne pédonculé et du hêtreRéflexions sur l’autécologie des essences. Rev. For. Fr.541741Google Scholar
  51. Lévy, G. 1978Nutrition et production de l’Epicéa commun adulte sur sols hydromorphes en Lorraine: Liaisons avec les caractéristiques stationnellesAnn. Sci. For.353353Google Scholar
  52. Lévy G., Lefèvre Y 2001 La forêt et sa culture sur sol à nappe temporaire. Contraintes subies, choix des essences, interventions et gestion durable. ENGREF, Nancy. 223 ppGoogle Scholar
  53. Lévy, G, Lefèvre, Y, Becker, M, Frochot, H, Picard, JF, Wagner, PA., Aussenac, G. 1999Excess water: effects on growth of oak Special Issue. Fonctionnement des arbres et écosystèmes forestiers. Avancées récentes et conséquences sylvicolesRev. For. Fr.51151161Google Scholar
  54. Lévy G., Toutain F 1994 Aération et phénomènes d’oxydo-réduction dans le sol. In Pédologie. Eds. M Bonneau and B Souchier, Tome II. Constituants et Propriétés du Sol. 2ème Ed. pp. 467–478. Masson, ParisGoogle Scholar
  55. Lucot, E, Badot, PM., Bruckert, S. 1995Influence de l’humidité du sol et de la distribution des racines sur le potentiel hydrique du xylème dans des peuplements de chêne (Quercussp.) de basse altitudeAnn. Sci. For.52173182Google Scholar
  56. Lucot, E., Bruckert, S. 1992Organisation du système racinaire du chêne pédonculé (Quercus robur) développé en conditions édaphiques non contraignantes (sol brun lessivé colluvial)Ann. For. Sci.49465479Google Scholar
  57. Luxová, M., Ciamporová, M. 1992Root structureKolek, J.Kozinka, V. eds. Physiology of the Root SystemKluwer Academic PublishersDordrecht3181Google Scholar
  58. Monnier, G, Stengel, P., Fies, J-C. 1973Une méthode de mesure de la densité apparente de petits agglomérats terreux Application à l’analyse des systèmes de porosité du solAnn. Agron.24533545Google Scholar
  59. Page A L, Miller R H., Keeney D R 1982 Methods of soil analysis: Part 2, Chemical and Microbiological Properties. 2nd Ed. A L Page, R H Miller and D R Keeney. pp.7–610. American Society of Agronomy and Soil Science Society of America, Madison, WIGoogle Scholar
  60. Penuelas, J., Filella, I. 2003Deuterium labelling of roots provides evidence of deep water access and hydraulic lift by Pinus nigra in a Mediterranean forest of NE SpainEnv. Exp. Bot.49201208Google Scholar
  61. Petersen, GW, Cunningham, RL., Matelski, RP. 1968Moisture characteristics of Pennsylvania soils: I Moisture retention as related to textureSoil Sci. Soc. Am. Pro.32271275Google Scholar
  62. Ponti, F, Minotta, G, Cantoni, L., Bagnaresi, U. 2004Fine root dynamics of pedunculate oak and narrow-leaved ash in a mixed-hardwood plantation in clay soilsPlant and Soil.2593949Google Scholar
  63. Rémy J 1980 Carte des sols de la Belgique: planchette de Seloignes 190E. Centre de cartographie des sols de Belgique méridionale, GemblouxGoogle Scholar
  64. Richards, LA. 1941A pressure-membrane extraction apparatus for soil solutionSoil Sci.51377386Google Scholar
  65. Schmull, M., Thomas, FM. 2000Morphological and physiological reactions of young deciduous trees (Quercus robur L., Q. petraea (Matt.) Liebl., Fagus sylvatica L.) to waterloggingPlant and Soil.225227242Google Scholar
  66. Scholander, PF, Bradstreet, ED, Hammel, HT., Hemmingsen, EA. 1966Sap concentrations in halophytes and some other plantsPlant Physiol.41529532PubMedGoogle Scholar
  67. Stirk, GB. 1954Some aspects of soil shrinkage and the effect of cracking upon water entry into the soilAust. J. Agr. Res.5279290Google Scholar
  68. Stover, RH., Simmonds, NW. 1987BananasLongmanLondonGoogle Scholar
  69. Sucoff, E., Hong, SG. 1974Effects of thinning on needle water potential in red pineForest Sci.202529Google Scholar
  70. Tessier D., Berrier J. (1979). Utilisation de la microscopie à balayage dans l’étude des sols. Observations de sols soumis à différents pF. Sci. du Sol. (1), 67–82Google Scholar
  71. Thierron V, Gloesener Y., André P 1995 Rapport final du projet Mise au point et application de traitements de restauration. UCL, Unité des Eaux et Forêts. pp. 75Google Scholar
  72. Thomas, FM. 2000Vertical rooting patterns of mature Quercus trees growing on different soil types in northern GermanyPlant Ecol.14795103Google Scholar
  73. Thomas, FM., Hartmann, G. 1996Soil and tree water relations in mature oak stands of northern Germany differing in the degree of declineAnn. For. Sci.53697720Google Scholar
  74. Thomas, FM., Hartmann, G. 1998Tree rooting patterns and soil water relations of healthy and damaged stands of mature oak (Quercus roburL. and Quercus petraea [Matt] Liebl.)Plant and Soil203145158Google Scholar
  75. Vincke C 2003 Approche écophysiologique des flux d’eau au sein d’une chênaie pédonculée (Q. robur L.) dépérissante sur sol à régime hydrique alternatif. Thèse, Unité des Eaux et Forêts, UCL, Belgique. p. 392Google Scholar
  76. Voltz, M., Cabidoche, Y-M. 1995Non-uniform volume and water content changes in swelling clay soil: I Theoretical analysisEur. J. Soil Sci.46333343Google Scholar
  77. Wagner P A 1996 Ecophysiologie comparée des plants de chêne pédonculé (Q. robur L.) et de chêne sessile (Q. petraea (Matt.) Liebl.) soumis à deux contraintes racinaires successives: hypoxie et sécheresse. Application à la mise en valeur forestière des pélosol-pseudogleys. Thèse de l’Université H Poincaré – Nancy I. INRA. 110 ppGoogle Scholar
  78. Wargo, PM. 1996Consequences of environmental stress on oak: predisposition to pathogensAnn. Sci. For.53359368Google Scholar
  79. Yule, DF., Ritchie, JT. 1980Soil shrinkage relationships of Texas Vertisols: I Small coresSoil Sci. Soc. Am. J.4412851291Google Scholar
  80. Yule, DF., Ritchie, JT. 1980Soil shrinkage relationships of Texas Vertisols: II Large coresSoil Sci. Soc. Am. J.4412911295Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  1. 1.Unité des Eaux et ForêtsLouvain-la-NeuveBelgique
  2. 2.Unité des Sciences du solLouvain-la-NeuveBelgique

Personalised recommendations