Plant and Soil

, Volume 268, Issue 1, pp 35–49 | Cite as

The role of Calamagrostis communities in preventing soil acidification and base cation losses in a deforested mountain area affected by acid deposition

  • K. Fiala
  • I. Tůma
  • P. Holub
  • J. Jandák


The effects of grass growth and N deposition on the leaching of nutrients from forest soil were studied in a lysimeter experiment performed in the Moravian-Silesian Beskydy Mts. (the Czech Republic). It was assumed that the grass sward formed on sites deforested due to forest decline would improve the soil environment. Lysimeters with growing acidophilous grasses (Calamagrostis arundinacea and C. villosa), common on clear-cut areas, and with unplanted bare forest soil were installed in the deforested area affected by air pollution. Wet bulk deposition of sulphur in SO 4 2− corresponded to 21.6–40.1 kg ha−1 and nitrogen in NH 4 + and NO 3 to 8.9–17.4 kg N ha−1, with a rain water pH of 4.39–4.59 and conductivity of 18.6–36.4 μS cm−1 during the growing seasons 1997–1999. In addition, the lysimeters were treated with 50 kg N ha−1 yr−1 as ammonium nitrate during the 3 years of the experiment. Rapid growth of planted grasses resulted in a very fast formation of both above- and below-ground biomass and a large accumulation of nitrogen in the tissue of growing grasses. The greatest differences in N accumulation in aboveground biomass were observed at the end of the third growing season; in C. villosa and C. arundinacea, respectively, 2.66 and 3.44 g N m−2 after addition of nitrogen and 1.34 and 2.39 g N m−2 in control. Greater amounts of nitrogen were assessed in below-ground plant parts (9.93–12.97 g N m−2 in C. villosa and 4.29–4.39 g N m−2 in C. arundinacea). During the second and third year of experiment, the following effects were the most pronounced: the presence of growing grasses resulted in a decrease of both the acidity and conductivity of lysimetric water and in a lower amount of leached nitrogen, especially of nitrates. Leaching of base cations (Ca2+ and Mg2+) was two to three times lower than from bare soil without grasses. An excess of labile Al3+ was substantially eliminated in treatments with grasses. Enhanced N input increased significantly the acidity and losses of nutrients only in unplanted lysimeters. The leaching of N from treatments with grasses (3.9–5.6 kg N ha−1) was 31–46% of the amount of N in wet deposition. However, the amount of leached N (4.2–6.0 kg N ha−1) after N application was only 7.1–8.9% of total N input. After a short three year period, the features of soil with planted grasses indicated a slight improvement: higher pH values and Ca2+ and Mg2+ contents. The ability of these grass stands to reduce the excess nitrogen in soil is the principal mechanism modifying the negative impact on sites deforested by acid depositions. Thus it is suggested that grass sward formation partly eliminates negative processes associated with soil acidification and has a positive effect on the reduction of nutrient losses from the soil.


clear-cut grasses lysimetric water soil amelioration soil leaching wet deposition 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andrzejewska L and Chmielewski K 1995 Responses of microbe communities, soil invertebrates and a herbage layer to degradated forest habitats in the Karkonoszy Mts. In Problemy ekologiczne wysokogórskiej czesci Karkonoszy. (Ed.) Z Fischer. pp. 269–285. Institut Ekologii PAN, Dziekanów Lesny (in Polish).Google Scholar
  2. Balestrini, R, Galli, L, Tartari, G 2000Wet and dry atmospheric deposition at prealpine and alpine sites in northern ItalyAtm. Envir3414551470Google Scholar
  3. Betz, H 1998Untersuchungen zur Ausbreitungsökologie des Wolligen Reitgrases (Calamagrostis villosa (Chaix.) J.F.Gmel.)Bayreuther Forum Ökologie591207Google Scholar
  4. Bobbink, R, Roelofs, J G M 1995Nitrogen critical loads for natural and semi-natural ecosystems: the empirical approachWater Air Soil Pollut8524132418Google Scholar
  5. Bobbink, R, Hornung, M, Roelofs, J G M 1998The effect of air-born nitrogen pollutans on species diversity in natural and semi-natural European vegetationJ. Ecol86717738Google Scholar
  6. Burger, J A, Pritchett, W L 1984Effects of clearfelling and site preparation on nitrogen mineralization in a southern pine standSoil Sci. Soc. Am. J4814321437Google Scholar
  7. Donaldson, J M, Henderson, G S 1990Nitrification potential of secondary-succession upland oak forests: I. Mineralization and nitrification during laboratory incubationsSoil Sci. Soc. Am. J54892897Google Scholar
  8. Emmer, I M 1999Litter decomposition and soil nitrogen dynamics (1995–1996) in the Krkonoše National ParkJ. For. Sci45316327Google Scholar
  9. Emmer, I M, Fanta, J, Kobus, A T, Kooijman, A, Sevink, J 1998Reversing borealization as a means to restore biodiversity in Central-European mountain forests – An example from the Krkonose Mountains, Czech RepublicBiodiv. Conserv7229247Google Scholar
  10. Eugster, W, Perego, S, Wanner, H, Leuenberger, A, Liechti, M, Reinhardt, M, Geissbuhler, P, Gempeler, M, Schenk, J 1998Spatial variation in annual nitrogen deposition in a rural region in SwitzerlandEnvir. Pollution102327335Google Scholar
  11. Falkengren-Grerup, U 1986Soil acidification and vegetation changes in deciduous forest in southern SwedenOecologia70339347Google Scholar
  12. Fanta, J 1997Rehabilitating degraded forests in Central Europe into self-sustaining forest ecosystemsEcol. Eng8289297Google Scholar
  13. Fiala, K 1998Variation in belowground biomass of grass stands in deforested areas affected by air pollution in the Beskydy MtsEkológia17256278Google Scholar
  14. Fiala, K, Jakrlová, J, Zelená, V 1989Biomass partitioning in two Calamagrostis villosa stands on deforested sitesFolia Geobot. Phytotax24207210Google Scholar
  15. Fiala, K, Tůma, I, Jakrlová, J, Ježíková, M, Sedláková, I, Holub, P 1998The role of grass ecosystems of deforested areas in the region affected by air pollution (the Beskydy Mts., the Czech Republic)Ekológia17241255Google Scholar
  16. Fiala, K, Tůma, I, Holub, P 2001Effect of wet depositions on losses of nutrients from soil of deforested areas in the Moravian-Silesian Beskids Mts. (The Czech Republic)Ekológia20373381Google Scholar
  17. Gloser, J, Gloser, V, Pol čák, Z 1996Basic characteristics of photosynthesis, respiration and mineral nutrient uptake of Calamagrostis villosaFiala, K eds. Grass Ecosystems of Deforested Areas in the Beskydy Mts. Preliminary Results of Ecological StudiesILE AS CRBrno117122Google Scholar
  18. Gorham, E, Vitousek, P M, Reiners, W A 1979The regulation of chemical budgets over the course of terrestrial ecosystem successionAnn. Rev. Ecol. Syst105384CrossRefGoogle Scholar
  19. Hadaš P 1993 Immission impact and climatic classification of the forest region Ostravice in the Moravian-Silesian Beskydy Mts.. Ústav ekologie lesa FLD VŠZ. Brno, p. 37.Google Scholar
  20. Holub, P 2003The effect of increased altitude on the growth and nitrogen use efficiency of Calamagrostis arundinacea and C. villosaBiologia58111Google Scholar
  21. Holub, P 1999Hodnocení píjmu dusíku a jeho retranslokace travami na odlesneenych plochachJ. For. Sci45358364Google Scholar
  22. James, B R, Clark, C J, Riha, S J 1983An 8-hydroxyquinoline method for labile and total aluminium in soil extractsSoil Sci. Soc. Am. J47893897Google Scholar
  23. Kennedy, I R 1992Acid Soil and Acid RainJohn Wiley & SonsNew York241Google Scholar
  24. Koppisch, D 1994Nährstoffhaushalt und Populationsdynamik von Calamagrostis villosa (Chaix.) J.F. Gmel , einer Rhizompflanze des Unterwuchses von FichtenwäldernBayreuther Forum Ökologie121187Google Scholar
  25. Koppisch, D 1996Ressourcenlimitierung von Calamagrostis villosa-Beständen in Fichtelgebirge (NO-Bayern)Verhandlungen der Gesellschaft für Ökologie26789795Google Scholar
  26. Kubizakova, J 2001Atmospheric pollution as a stressor in disturbed speruce standsEkológia208094Google Scholar
  27. Květ, J 1993Ecological crisis in post-communist Central EuropeJ. Aquat. Plant. Manag311317Google Scholar
  28. Lettl, A, Hýsek, J 1994Soil microflora in an area where spruce (Picea abies) was killed by SO2 emissions and was succeeded by birch (Betula pendula) and mountain ash (Sorbus aucuparia)Ecol. Engin32737Google Scholar
  29. Ley, R E, Lipson, D A, Schmidt, S K 2001Microbial biomass levels in barren and vegetated high altitude talus soilsSoil. Sci. Soc. Am. J65111117Google Scholar
  30. Mansfield T A 1988 Factors determining root shoot partitioning. In Forest Decline Symptomatology. pp. 171–180. Edinburgh.Google Scholar
  31. Marks, P L, Borman, F H 1972Revegetation following forest cutting: mechanisms for return to steady state nutrient cyclingScience176914915Google Scholar
  32. Nihlgard, B 1985The ammonium hypothesis – An additional explanation to the forest dieback in EuropeAmbio1428Google Scholar
  33. Novák, F 1999Nitrification in Norway spruce forest soil in Beskids MtsKula, ETesa , V eds. The Beskids BulletinMendel Agriculture and Forestry UniversityBrno2328Google Scholar
  34. Pe ina, V, Kv t, J 1975The effect of montane spruce thinning on the biomass production of the ground vegetationLesnictví21659686Google Scholar
  35. Py ek, P 1990The influence of Calamagrostis villosa on the species diversity of deforested sites in the Kru né, hory MtsPreslia62323335Google Scholar
  36. Py ek, P 1993What do we know about Calamagrostis villosa? A review of the species behaviour in secondary habitatsPreslia65120Google Scholar
  37. Schulze, E D, Oren, R, Lange, O 1989Processes leading to forest decline: A SynthesisEcol. Stud77459468Google Scholar
  38. Sedláková, I, Fiala, K, Tůma, I 1999Vliv aplikace herbicidu na půdní vlastnosti imisních holin s porosty trav v BeskydechJ. For. Sci45328336Google Scholar
  39. Soukupová, L 2001Plant invasions in Central European Middle-Mountains: a result of global change?Visconti, GBeniston, MIannorelli, E DBarba, D eds. Global Change and Protected AreasKluwer Academic PublishersDordrecht-Boston-London289299Google Scholar
  40. Soukupová, L, Vosá,tka M, Albrechtová, M and Frantík T 1995 Soil-plant-fungi interactions in a declining spruce ecosystem: An experimental study. In Mountain National Parks and Biosphere Reserves: Monitoring and Managemnet. Eds. J Flousek and G C S Roberts. pp. 55–569. Porc. Int. Conf., September 1993,  pindlerův Mlý,n.Google Scholar
  41. Takamatsu, T, Kohno, T, Ishida, K, Sase, H, Yoshida, T, Morishita, T 1997Role of the dwarf bamboo (Sasa) community in retaining basic cations in soil and preventing soil acidification in mountainous areas of JapanPlant Soil192167179Google Scholar
  42. Tesarová, M, Vakula J and Pá,vková, A 1999 Vá,znam Calamagrostis arundinacea a C. villosa pro zlepá,ová,ní biologický,ch vlastností lesních půd poš,kozených imisemi. In Akumulace a ztráty organické hmoty a živin v travinných ekosystémech na odlesnených plochách. Ed. K Fiala. pp. 46–50. Botanický ústav AV ČR, Průhonice.Google Scholar
  43. Tůma, I 1998Variation in the activity of cellulolytic microorganisms in several ecosystems of the Beskydy MtsEkológia17316326Google Scholar
  44. Tůma, I 2002Release of nutrients from decomposing litter on deforested areas affected by air pollution in the Beskydy MtsEkológia21201220Google Scholar
  45. Úlehlová, B 1993Leaching of nitrogen from the grassland ecosystemRychnovská, M. eds. Structure and Functioning of Seminatural MeadowsAcademiaPraha291295Google Scholar
  46. Dam, D 1990Atmospheric deposition and nutrient cycling in chalk grasslandUniversity of UtrechtUtrecht119PhD thesisGoogle Scholar
  47. Dam, D, Heil, G W, Bobbink, R, Heijne, B 1990Atmospheric deposition to grassland canopies: Lysimeter budgets discriminating between interception deposition, mineral weathering and mineralizationWater, Air Soil Pollut5383101Google Scholar
  48. Vitousek, P M, Stanford, R L 1986Nutrient cycling in moist tropical forestAnn. Rev. Ecol. Syst17137169Google Scholar
  49. Zá,hora J 1997 Vymý,vá,ní minerá,lního dusí,ku ze svrchních vrstev lesních půd. In Půdní, systé,my a antropická, innost. Ed. J Kulhavý,. pp. 89–90. Sborni abstraktu konference PS, Milovy-Devet Skal, MZLU, Brno.Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • K. Fiala
    • 1
  • I. Tůma
    • 1
  • P. Holub
    • 1
  • J. Jandák
    • 2
  1. 1.Department of EcologyInstitute of Botany, Academy of Sciences of the Czech RepublicBrnoCzech Republic
  2. 2.Institute of Pedology and Microbiology, Faculty of AgronomyMendel Agriculture and Forestry UniversityBrnoCzech Republic

Personalised recommendations