Role of ethylene in the regulatory mechanism underlying the abortion of ovules after fertilization in Xanthoceras sorbifolium

Abstract

Key message

Genes related to the MAPK cascade, ethylene signaling pathway, Pi starvation response, and NAC TFs were differentially expressed between normal and abortive ovules. Receptor-mediated ethylene signal perception and transmission play an important role in regulating fruit and ovule development.

Abstract

Xanthoceras sorbifolium, a small to medium-sized tree endemic to northern China, is an emerging dedicated oilseed crop designed for applications in advanced biofuel, engine oil, and functional food, as well as for pharmaceutical and cosmetic applications. Despite the importance of Xanthoceras seed oil, low seed productivity has constricted commercial exploitation of the species. The abortion of developing seeds (ovules after fertilization) is a major factor limiting fruit and seed production in the plant. To increase fruit and seed yields, a better understanding of the mechanisms underlying the abortion of fertilized ovules is critical. This study revealed differences in nucellus degeneration, endosperm development, and starch grain content between normally and abnormally developing ovules after fertilization. We constructed 6 RNA-sequencing (RNA-seq) libraries from normally and abnormally developing ovules at the onset of their abortion process. Comparative transcriptome analysis between the normal and abnormal ovules identified 818 differentially expressed genes (DEGs). Among DEGs, many genes involved in mitogen-activated protein kinase (MAPK) cascades, ethylene signaling pathway, and NAC transcription factor genes showed up-regulated expression in abnormal ovules. The RNA-seq data were validated using quantitative reverse-transcription PCR. Using virus-induced gene silencing (VIGS) methods, evaluation of an ethylene receptor gene (XsERS) function indicated that the gene was closely related to early development of fruits and seeds. Based on the data presented here, we propose a model for a MAPK-ethylene signaling-NAC2 gene regulatory cascade that plays an important role in the regulation of the ovule abortion process in X. sorbifolium. The present study is imperative for understanding the mechanisms of ovule abortion after fertilization and identifying the critical genes and gene networks involved in determining the fate of ovule development.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. Abdelrahman M, Jogaiah S, Burritt DJ, Lam-Son Phan Tran LS (2018) Legume genetic resources and transcriptome dynamics under abiotic stress conditions. Plant Cell Environ 41:1972–1983

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Abeles FB, Morgan PW, Saltveit ME (1992) Ethylene in plant biology, 2nd edn. Academic Press, New York

    Google Scholar 

  3. Aung K, Lin SI, Wu CC, Huang YT, Su CL, Chiou TJ (2006) pho2, a phosphate over accumulator, is caused by a nonsense mutation in a microRNA399 target gene. Plant Physiol 141:1000–1011

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  4. Balazadeh S et al (2010) A gene regulatory network controlled by the NAC transcription factor ANAC092/AtNAC2/ORE1 during salt-promoted senescence. Plant J 62:250–264

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  5. Berleth M et al (2019) Molecular analysis of protein-protein interactions in the ethylene pathway in the different ethylene receptor subfamilies. Front Plant Sci 10:726. https://doi.org/10.3389/fpls.2019.00726

    Article  PubMed  PubMed Central  Google Scholar 

  6. Bi Q et al (2019) Pseudomolecule-level assembly of the Chinese oil tree yellowhorn (Xanthoceras sorbifolium) genome. GigaScience 8:1–11. https://doi.org/10.1093/gigascience/giz070

    CAS  Article  Google Scholar 

  7. Bleecker AB, Esch JJ, Hall AE, Rodriguez FI, Binder BM (1998) The ethylene-receptor family from Arabidopsis: structure and function. Phil Trans R Soc Lond B 353:1405–1412

    CAS  Article  Google Scholar 

  8. Borch K, Bouma TJ, Lynch JP, Brown KM (1999) Ethylene: a regulator of root architectural responses to soil phosphorus availability. Plant Cell Environ 22:425–431

    CAS  Article  Google Scholar 

  9. Carbonell-Bejerano P, Urbez C, Carbonell J, Granell T, Perez-Amador MA (2010) A fertilization-independent developmental program triggers partial fruit development and senescence processes in pistils of Arabidopsis. Plant Physiol 154:163–172

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  10. Carbonell-Bejerano P, Urbez C, Granell A, Carbonell J, Perez-Amador MA (2011) Ethylene is involved in pistil fate by modulating the onset of ovule senescence and the GA-mediated fruit set in Arabidopsis. BMC Plant Biol 11:84

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  11. Chapin LJ, Jones ML (2009) Ethylene regulates phosphorus remobilization and expression of a phosphate transporter (PhPT1) during Petunia corolla senescence. J Exp Bot 60:2179–2190

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  12. Chen LQ et al (2010) Sugar transporters for intercellular exchange and nutrition of pathogens. Nature 468:527–532

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  13. Chen LQ et al (2012) Sucrose efflux mediated by SWEET proteins as a key step for phloem transport. Science 335:207–211

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  14. Chen X et al (2013) Deep sequencing analysis of the transcriptomes of peanut aerial and subterranean young pods identifies candidate genes related to early embryo abortion. Plant Biotechnol J 11:115–127

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  15. Chen LQ et al (2015) A cascade of sequentially expressed sucrose transporters in the seed coat and endosperm provides nutrition for the Arabidopsis embryo. Plant Cell 27:607–619

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  16. Chen Y et al (2020) Roles of SlETR7, a newly discovered ethylene receptor, in tomato plant and fruit development. Hortic Res 7:17. https://doi.org/10.1038/s41438-020-0239-y

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. Cheng Y et al (2015) Transcriptome analysis and gene expression profiling of abortive and developing ovules during fruit development in hazelnut. PLoS ONE 10:e0122072. https://doi.org/10.1371/journal.pone.0122072

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. Dean G et al (2011) Analysis of gene expression patterns during seed coat development in Arabidopsis. Mol Plant 4:1074–1091

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  19. Devaiah BN, Madhuvanthi R, Karthikeyan AS, Raghothama KG (2009) Phosphate starvation responses and gibberellic acid biosynthesis are regulated by the MYB62 transcription factor in Arabidopsis. Mol Plant 2:43–58

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  20. Dinh PTY, Leung MRS, McManus MT (2012) Regulation of root growth by auxin and ethylene is influenced by phosphate supply in white clover (Trifolium repens L.). Plant Growth Regul 66:179–190

    CAS  Article  Google Scholar 

  21. Domínguez F, Cejudo FJ (2014) Programmed cell death (PCD): an essential process of cereal seed development and germination. Front Plant Sci 5:366. https://doi.org/10.3389/fpls.2014.00366

    Article  PubMed  PubMed Central  Google Scholar 

  22. Domínguez F, Moreno J, Cejudo FJ (2001) The nucellus degenerates by a process of programmed cell death during the early stages of wheat grain development. Planta 213:352–360

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  23. Feder D, McGeary RP, Mitić N, Lonhienne T, Furtado A (2020) Structural elements that modulate the substrate specificity of plant purple acid phosphatases: avenues for improved phosphorus acquisition in crops. Plant Sci 294:110445. https://doi.org/10.1016/j.plantsci.2020.110445

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. García MJ, Romera FJ, Lucena C, Alcántara E, Pérez-Vicente R (2015) Ethylene and the regulation of physiological and morphological responses to nutrient deficiencies. Plant Physiol 169:51–60

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  25. Geng Y, Wu M, Zhang C (2020) Sugar transporter ZjSWEET2.2 mediates sugar loading in leaves of Ziziphus jujuba Mill. Front Plant Sci 11:1081. https://doi.org/10.3389/fpls.2020.01081

    Article  PubMed  PubMed Central  Google Scholar 

  26. Greenwood JS, Helm M, Gietl C (2005) Ricinosomes and endosperm transfer cell structure in programmed cell death of the nucellus during Ricinus seed development. Proc Natl Acad Sci USA 102:2238–2243

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  27. Gregersen PL, Holm PB (2007) Transcriptome analysis of senescence in the flag leaf of wheat (Triticum aestivum L.). Plant Biotechnol J 5:192–206

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  28. Gu LB et al (2019) Comparative study on the extraction of Xanthoceras sorbifolia Bunge (yellow horn) seed oil using subcritical n-butane, supercritical CO2, and the Soxhlet method. LWT Food Sci Technol 111:548–554

    CAS  Article  Google Scholar 

  29. Gunawardena A, Pearce DM, Jackson MB, Hawes CR, Evans DE (2001) Characterisation of programmed cell death during aerenchyma formation induced by ethylene or hypoxia in roots of maize (Zea mays L.). Planta 212:205–214

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  30. Hays DB, Do JH, Mason RE, Morgan G, Finlayson SA (2007) Heat stress induced ethylene production in developing wheat grains induces kernel abortion and increased maturation in a susceptible cultivar. Plant Sci 172:1113–1123

    CAS  Article  Google Scholar 

  31. He XJ et al (2005) AtNAC2, a transcription factor downstream of ethylene and auxin signaling pathways, is involved in salt stress response and lateral root development. Plant J 44:903–916

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  32. Hill LM, Morley-Smith ER, Rawsthorne S (2003) Metabolism of sugars in the endosperm of developing seeds of oilseed rape. Plant Physiol 131:228–236

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  33. Huang TK et al (2013) Identification of downstream components of ubiquitin conjugating enzyme PHOSPHATE2 by quantitative membrane proteomics in Arabidopsis roots. Plant Cell 25:4044–4060

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  34. Iqbal N, Trivellini A, Masood A, Ferrante A, Khan NA (2013) Current understanding on ethylene signaling in plants: the influence of nutrient availability. Plant Physiol Biochem 73:128–138

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  35. Khan MIR, Trivellini A, Fatma M, Masood A, Francini A, Iqbal N, Ferrante A, Khan NA (2015) Role of ethylene in responses of plants to nitrogen availability. Front Plant Sci 6:927. https://doi.org/10.3389/fpls.2015.00927

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  36. Kim D, Langmead B, Salzberg SL (2015) HSAT: a fast spliced aligner with ow memory requirements. Nat Methods 12:257–360

    Google Scholar 

  37. Kim HJ, Nam HG, Lim PO (2016) Regulatory network of NAC transcription factors in leaf senescence. Curr Opin Plant Biol 33:48–56

    PubMed  Article  CAS  Google Scholar 

  38. Kim J et al (2018) New insights into the regulation of leaf senescence in Arabidopsis. J Exper Bot 69:787–799

    CAS  Article  Google Scholar 

  39. Lei M et al (2011) Ethylene signaling is involved in regulation of phosphate starvation-induced gene expression and production of acid phosphatases and anthocyanin in Arabidopsis. New phytol 189:1084–1095

    CAS  PubMed  Article  Google Scholar 

  40. Li Z, Peng J, Wen X, Guo H (2013) ETHYLENE-INSENSITIVE3 is a senescence-associated gene that accelerates age-dependent leaf senescence by directly repressing miR164 transcription in Arabidopsis. Plant Cell 25:3311–3328

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  41. Li M et al (2016) De novo transcriptome sequencing and gene expression analysis reveal potential mechanisms of seed abortion in dove tree (Davidia involucrata Baill.). BMC Plant Biol 16:82. https://doi.org/10.1186/s12870-016-0772-x

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  42. Li D et al (2019) Transcriptomic profiling identifies differentially expressed genes associated with programmed cell death of nucellar cells in Ginkgo biloba L. BMC Plant Biol 19:91. https://doi.org/10.1186/s12870-019-1671-8

    Article  PubMed  PubMed Central  Google Scholar 

  43. Lin IW et al (1998) Nucellain, a barley homolog of the dicot vacuolar-processing protease, is localized in nucellar cell walls. Plant Physiol 118:1169–1180

    Article  Google Scholar 

  44. Liu H et al (2010) Comparative proteomic analysis of longan (Dimocarpus longan Lour.) seed abortion. Planta 231:847–860

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  45. Liu J et al (2020) Involvement of active MKK9-MAPK3/MAPK6 in increasing respiration in salt-treated Arabidopsis callus. Protoplasma 257:965–977

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  46. Lombardi L et al (2007) Programmed cell death of the nucellus during Sechium edule Sw. seed development is associated with activation of caspase-like proteases. J Exp Bot 58:2949–2958

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  47. Lombardi L, Mariotti L, Picciarelli P, Ceccarelli N, Lorenzi R (2012) Ethylene produced by the endosperm is involved in the regulation of nucellus programmed cell death in Sechium edule Sw. Plant Sci 187:31–38

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  48. Nakagami H, Pitzschke A, Hirt H (2005) Emerging MAP kinase pathways in plant stress signalling. Trends Plant Sci 10:339–346

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  49. Niewiadomski P et al (2005) The Arabidopsis plastidic glucose 6-phosphate/phosphate translocator GPT1 is essential for pollen maturation and embryo sac development. Plant Cell 17:760–775

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  50. Rasori A, Ruperti B, Bonghi C, Tonutti P, Ramina A (2002) Characterization of two putative ethylene receptor genes expressed during peach fruit development and abscission. J Exp Bot 53:2333–2339

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  51. Ruan YL, Patrick JW, Bouzayen M, Osorio S, Fernie AR (2012) Molecular regulation of seed and fruit set. Trends Plant Sci 17:656–665

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  52. Russell SD (1993) The egg cell: development and role in fertilization and early embryogenesis. Plant Cell 5:1349–1359

    PubMed  PubMed Central  Article  Google Scholar 

  53. Sauer N et al (2004) AtSUC8 and AtSUC9 encode functional sucrose transporters, but the closely related AtSUC6 and AtSUC7 genes encode aberrant proteins in different Arabidopsis ecotypes. Plant J 40:120–130

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  54. Savadi S (2018) Molecular regulation of seed development and strategies for engineering seed size in crop plants. Plant Growth Regul 84:401–422

    CAS  Article  Google Scholar 

  55. Schachtman DP, Reid RJ, Ayling SM (1998) Phosphorus uptake by plants: from soil to cell. Plant Physiol 116:447–453

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  56. Sgromo C et al (2010) Isolation and expression analysis of organelle genes involved in the development of olive flowers (Olea europaea L.). Plant Biosyst 144:733–739

    Article  Google Scholar 

  57. Shen S et al (2020) The equilibrium between sugars and ethylene is involved in shading- and drought-induced kernel abortion in maize. Plant Growth Regul 91:101–111

    CAS  Article  Google Scholar 

  58. Sreenivasulu N, Sopory SK, Kavi Kishor PB (2007) Deciphering the regulatory mechanisms of abiotic stress tolerance in plants by genomic approaches. Gene 388:1–13

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  59. Srivastava AC, Ganesan S, Ismail IO, Ayre BG (2008) Functional characterization of the Arabidopsis thaliana AtSUC2 Suc/H+ symporter by tissue-specific complementation reveals an essential role in phloem loading but not in long-distance transport. Plant Physiol 147:200–211

    Article  CAS  Google Scholar 

  60. Sun K, Cui Y, Hauser BA (2005) Environmental stress alters genes expression and induces ovule abortion: reactive oxygen species appear as ovules commit to abort. Planta 222:632–642

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  61. Thongkum M et al (2018) The effect of 1-methylcyclopropene (1-MCP) on expression of ethylene receptor genes in durian pulp during ripening. Plant Physiol Biochem 125:232–238

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  62. Tieman DM, Klee HJ (1999) Differential expression of two novel members of the tomato ethylene-receptor family. Plant Physiol 120:165–172

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  63. Tsanakas GF, Manioudaki ME, Economou AE, Kalaitzis P (2014) De novo transcriptome analysis of petal senescence in Gardenia jasminoides Ellis. BMC Genomics 15:554

    PubMed  PubMed Central  Article  Google Scholar 

  64. Ueda H, Ito T, Inoue R, Masuda Y, Nagashima Y, Kozuka T, Kusaba M (2020) Genetic interaction among phytochrome, ethylene and abscisic acid signaling during dark-induced senescence in Arabidopsis thaliana. Front Plant Sci 11:564. https://doi.org/10.3389/fpls.2020.00564

    Article  PubMed  PubMed Central  Google Scholar 

  65. Wang L, Feng Z, Wang X (2010) DEGseq: an R package for identifying differentially expressed genes from RNA-seq data. Bioinformatics 26:136–138

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  66. Wang L, Ruan C, Liu L, Du W, Bao A (2018) Comparative RNA-Seq analysis of highand low-oil yellow horn during embryonic development. Int J Mol Sci 19:3071. https://doi.org/10.3390/ijms19103071

    CAS  Article  PubMed Central  Google Scholar 

  67. Xiong CW, Zhao S, Yu X, Sun Y, Li H, Ruan CJ, Li JB (2020) Yellowhorn drought-induced transcription factor XsWRKY20 acts as a positive regulator in drought stress through ROS homeostasis and ABA signaling pathway. Plant Physiol Biochem 155:187–195

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  68. Xu J et al (2008) Activation of MAPK kinase 9 induces ethylene and camalexin biosynthesis and enhances sensitivity to salt stress in Arabidopsis. J Biol Chem 283:26996–27006

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  69. Xu W et al (2016) Endosperm and nucellus develop antagonistically in Arabidopsis seeds. Plant Cell 28:1343–1360

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  70. Yang T, Yu Q, Xu W, Li D, Chen F, Aizhong Liu A (2018) Transcriptome analysis reveals crucial genes involved in the biosynthesis of nervonic acid in woody Malania oleifera oilseeds. BMC Plant Biol 18:247. https://doi.org/10.1186/s12870-018-1463-6

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  71. Ye Q, Wang H, Su T, Wu WH, Chen YF (2018) The ubiquitin E3 ligase PRU1 regulates WRKY6 degradation to modulate phosphate homeostasis in response to low Pi stress in Arabidopsis. Plant Cell 30:1062–1076

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  72. Yoo SD, Cho YH, Tena G, Xiong Y, Sheen J (2008) Dual control of nuclear EIN3 by bifurcate MAPK cascades in C2H4 signalling. Nature 451:789–795

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  73. Zhou QY, Liu GS (2012) The embryology of Xanthoceras and its phylogenetic implications. Plant Syst Evol 298:457–468

    Article  Google Scholar 

  74. Zhou QY, Zheng YR (2015) Comparative de novo transcriptome analysis of fertilized ovules in Xanthoceras sorbifolium uncovered a pool of genes expressed specifically or preferentially in the selfed ovule that are potentially involved in late-acting self-incompatibility. PLoS ONE 10:e0140507. https://doi.org/10.1371/journal.pone.0140507

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  75. Zhou QY, Zheng YR, Lai LM, Du H (2017) Observations on sexual reproduction in Xanthoceras sorbifolium (Sapindaceae). Acta Bot Occid Sin 37:0014–0022

    Google Scholar 

  76. Zhou QY, Cai Q (2018) The superoxide dismutase genes might be required for appropriate development of the ovule after fertilization in Xanthoceras sorbifolium. Plant Cell Reports 37:727–739

    CAS  PubMed  Article  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank Xiuping Xu, Jie Wen, and Fengqin Dong for technical help. This work was supported by National Natural Science Foundation of China (U1903103, 30972344, 31370611 and 31570680) and Beijing Natural Science Foundation (6172028).

Author information

Affiliations

Authors

Contributions

QZ conceived the research; QZ and QC carried out the experiments; QZ analyzed the data and wrote the manuscript.

Corresponding author

Correspondence to Qingyuan Zhou.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 15 KB)

Supplementary file2 (XLSX 257 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhou, Q., Cai, Q. Role of ethylene in the regulatory mechanism underlying the abortion of ovules after fertilization in Xanthoceras sorbifolium. Plant Mol Biol (2021). https://doi.org/10.1007/s11103-021-01130-2

Download citation

Keywords

  • Fertilized ovule
  • Morphological investigations
  • Transcriptome analysis
  • Ethylene receptor gene silencing
  • Xanthoceras sorbifolium