Plastome sequences of the subgenus Passiflora reveal highly divergent genes and specific evolutionary features

Abstract

AbstractSection Key Message

Phylogenetic aspects, hotspots of nucleotide divergence, highly divergent genes, and specific RNA editing sites have been identified and characterized in the plastomes of the subgenus Passiflora.

AbstractSection Abstract

The genus Passiflora comprises more than 500 species across five subgenera: Astrophea, Decaloba, Deidamioides, Passiflora, and Tetrapathea. The most economically relevant species belong to the subgenus Passiflora, whose genetic pool and diversity among wild species remain poorly characterized. Similarly, little is known about the interspecific relationships within the subgenus Passiflora and the genetic causes of nuclear-cytoplasmic incompatibility observed in interspecific hybrids. Here, we report the complete nucleotide sequences of six plastomes belonging to species of the subgenus Passiflora, with the aim of better understanding the evolution of the plastome in this subgenus. Complete plastome sequences revealed five hotspots of nucleotide polymorphism: three intergenic regions and two coding sequences. Moreover, among 70 RNA editing sites predicted in our analysis for the subgenus Passiflora, 38 were not shared by all analyzed species, highlighting their species-specific occurrence. Furthermore, phylogenies based on plastid sequences accurately resolved most relationships between species and suggested a non-monophyletic origin of three super-sections of the subgenus Passiflora, previously defined solely based on morphological traits. Finally, our findings identified putative candidates, including predicted RNA editing sites and the coding sequences of accD and clpP genes, responsible for nuclear-cytoplasmic incompatibility in the interspecific hybrids of Passiflora.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Abreu PP, Souza MM, Santos EA, Pires MV, Pires MM, de Almeida AAF (2009) Passion flower hybrids and their use in the ornamental plant market: perspectives for sustainable development with emphasis on Brazil. Euphytica 166:307–315. https://doi.org/10.1007/s10681-008-9835-x

    Article  Google Scholar 

  2. Alkatib S, Scharff LB, Rogalski M, Fleischmann TT, Matthes A, Seeger S, Schöttler MA, Ruf S, Bock R (2012) The conributions of wobbling and superwobbling to the reading of the genetic code. PLoS Genet 8:e1003076. https://doi.org/10.1371/journal.pgen.1003076

    Article  PubMed  PubMed Central  Google Scholar 

  3. Allison LA, Simon LD, Maliga P (1996) Deletion of rpoB reveals a second distinct transcription system in plastids of higher plants. EMBO J 15:2802–2809

    Article  Google Scholar 

  4. Besnard G, Hernández P, Khadari B, Dorado G, Savolainen V (2011) Genomic profiling of plastid DNA variation in the Mediterranean olive tree. BMC Plant Biol 11:1. https://doi.org/10.1186/1471-2229-11-80

    Article  Google Scholar 

  5. Bogdanova VS, Zaytseva OO, Mglinets AV, Shatskaya NV, Kosterin OE, Vasiliev GV (2015) Nuclear-cytoplasmic conflict in pea (Pisum sativum L.) is associated with nuclear and plastidic candidate genes encoding acetyl-CoA carboxylase subunits. PLoS ONE 10:e0119835. https://doi.org/10.1371/journal.pone.0119835

    Article  PubMed  PubMed Central  Google Scholar 

  6. Börner T, Aleynikova AY, Zubo YO, Kusnetsov VV (2015) Chloroplast RNA polymerases: role in chloroplast biogenesis. Biochim Biophys Acta 1847:761–769. https://doi.org/10.1016/j.bbabio.2015.02.004

    Article  PubMed  Google Scholar 

  7. Bugallo V, Cardone SGT, Pannunzio MJ, Facciuto GR (2011) Breeding advances in Passiflora spp. (Passionflower) native to Argentina. Floriculture Ornamental Biotech 5:23–34

    Google Scholar 

  8. Cauz-Santos LA, Munhoz CF, Rodde N, Cauet S, Santos AA, Penha HA, Dornelas MC, Varani AM, Oliveira GCX, Bergès H, Vieira MLC (2017) The chloroplast genome of Passiflora edulis (Passifloraceae) assembled from long sequence reads: structural organization and phylogenomic studies in Malpighiales. Front Plant Sci 8:1–17. https://doi.org/10.3389/fpls.2017.00334

    Article  Google Scholar 

  9. Cerqueira-Silva CBM, Santos ESL, Jesus ON, Mori GM, Jesus ON, Corrêa RX, Souza AP (2014a) Molecular genetic variability of commercial and wild accessions of passion fruit (Passiflora spp.) targeting ex situ conservation and breeding. Int J Mol Sci 15:22933–22959. https://doi.org/10.3390/ijms151222933

    Article  PubMed  PubMed Central  Google Scholar 

  10. Cerqueira-Silva CBM, Santos ESL, Jesus GM, Jesus ON, Corrêa RX, Souza AP (2014b) Genetic breeding and diversity of the genus passiflora: progress and perspectives in molecular and genetic studies. Int J Mol Sci 15:14122–14152. https://doi.org/10.3390/ijms150814122

    Article  PubMed  PubMed Central  Google Scholar 

  11. Cerqueira-Silva CBM, Santos ESL, Vieira JGP, Mori GM, Jesus ON, Corrêa RX, Souza AP (2014c) New microsatellite markers for wild and commercial species of passiflora (Passifloraceae) and cross-amplification. Appl Plant Sci 2:1300061. https://doi.org/10.1590/S1516-89132013000500009

    Article  Google Scholar 

  12. Chitwood DH, Otoni WC (2017a) Divergent leaf shapes among Passiflora species arise from a shared juvenile morphology. Plant Direct 1:e00028. https://doi.org/10.1002/pld3.28

    Article  PubMed  PubMed Central  Google Scholar 

  13. Chitwood DH, Otoni WC (2017b) Morphometric analysis of Passiflora leaves: the relationship between landmarks of the vasculature and elliptical Fourier descriptors of the blade. Gigascience 6:1–13. https://doi.org/10.1093/gigascience/giw008

    Article  PubMed  PubMed Central  Google Scholar 

  14. Conceição LDHCS, Souza MM, Belo GO, Santos SF, Freitas JCO (2011) Hybridization among wild passionflower species. Braz J Bot 34:237–240. https://doi.org/10.1590/S0100-84042011000200011

    Article  Google Scholar 

  15. Daniell H, Lin CS, Yu M, Chang WJ (2016) Chloroplast genomes: diversity, evolution, and applications in genetic engineering. Genome Biol 17:134. https://doi.org/10.1186/s13059-016-1004-2

    Article  PubMed  PubMed Central  Google Scholar 

  16. Darling AC, Mau B, Blattner FR, Perna NT (2004) Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Res 14:1394–1403. https://doi.org/10.1101/gr.2289704

    Article  PubMed  PubMed Central  Google Scholar 

  17. Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 9:772. https://doi.org/10.1038/nmeth.2109

    Article  PubMed  PubMed Central  Google Scholar 

  18. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797. https://doi.org/10.1093/nar/gkh340

    Article  PubMed  PubMed Central  Google Scholar 

  19. Giudicelli GC, Mäder G, de Freitas LB (2015) Efficiency of ITS sequences for DNA barcoding in Passiflora (Passifloraceae). Int J Mol Sci 16:7289–7303. https://doi.org/10.3390/ijms16047289

    Article  PubMed  PubMed Central  Google Scholar 

  20. Greiner S, Bock R (2013) Tuning a ménage à trois: co-evolution and co-adaptation of nuclear and organellar genomes in plants. BioEssays 35:354–365. https://doi.org/10.1002/bies.201200137

    Article  PubMed  Google Scholar 

  21. Greiner S, Lehwark P, Bock R (2019) OrganellarGenomeDRAW (OGDRAW) version 1.3.1: expanded toolkit for the graphical visualization of organellar genomes. Nucleic Acids Res 47:W59–W64. https://doi.org/10.1093/nar/gkz238

    Article  PubMed  PubMed Central  Google Scholar 

  22. Greiner S, Wang X, Herrmann RG, Rauwolf U, Mayer K, Haberer G, Meurer J (2008) The complete nucleotide sequences of the 5 genetically distinct plastid genomes of Oenothera, subsection Oenothera: II. A microevolutionary view using bioinformatics and formal genetic data. Mol Biol Evol 25:2019–2030. https://doi.org/10.1093/molbev/msn149

    Article  PubMed  PubMed Central  Google Scholar 

  23. Hajdukiewicz PT, Allison LA, Maliga P (1997) The two RNA polymerases encoded by the nuclear and the plastid compartments transcribe distinct groups of genes in tobacco plastids. EMBO J 16:4041–4048. https://doi.org/10.1093/emboj/16.13.4041

    Article  PubMed  PubMed Central  Google Scholar 

  24. Hansen AK, Escobar LK, Gilbert LE, Jansen RK (2007) Paternal, maternal, and biparental inheritance of the chloroplast genome in Passiflora (Passifloraceae): implications for phylogenetic studies. Am J Bot 94:42–46. https://doi.org/10.3732/ajb.94.1.42

    Article  PubMed  Google Scholar 

  25. Hansen AK, Gilbert LE, Simpson BB, Downie SR, Cervi AC, Jansen RK (2006) Phylogenetic relationships and chromosome number evolution in Passiflora. Syst Bot 31:138–150. https://doi.org/10.1600/036364406775971769

    Article  Google Scholar 

  26. Ichinose M, Sugita M (2016) RNA editing and its molecular mechanism in plant organelles. Genes. https://doi.org/10.3390/genes8010005

    Article  PubMed  PubMed Central  Google Scholar 

  27. Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS (2017) ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods 14:587–589. https://doi.org/10.1038/nmeth.4285

    Article  PubMed  PubMed Central  Google Scholar 

  28. Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30:772–780. https://doi.org/10.1093/molbev/mst010

    Article  PubMed  PubMed Central  Google Scholar 

  29. Killip EW (1938) The American species of Passifloraceae. Field Museum of Natural History, Chicago, IL

    Google Scholar 

  30. Kode V, Mudd EA, Iamtham S, Day A (2005) The tobacco plastid accD gene is essential and is required for leaf development. Plant J 44:237–244. https://doi.org/10.1111/j.1365-313X.2005.02533.x

    Article  PubMed  Google Scholar 

  31. Krause K, Maier RM, Kofer W, Krupinska K, Herrmann RG (2000) Disruption of plastid-encoded RNA polymerase genes in tobacco: expression of only a distinct set of genes is not based on selective transcription of the plastid chromosome. Mol Gen Genet 263:1022–1030. https://doi.org/10.1007/pl00008690

    Article  PubMed  Google Scholar 

  32. Krosnick SE, Ford AJ, Freudenstein JV (2009) Taxonomic revision of Passiflora subgenus Tetrapathea including the monotypic genera Hollrungia and Tetrapathea (Passifloraceae), and a new species of Passiflora. Syst Bot 34:375–385. https://doi.org/10.1600/036364409788606343

    Article  Google Scholar 

  33. Krosnick SE, Porter-Utley KE, MacDougal JM, Jørgensen PM, McDade LA (2013) New insights into the evolution of Passiflora subgenus Decaloba (Passifloraceae): phylogenetic relationships and morphological synapomorphies. Syst Bot 38:692–713. https://doi.org/10.1600/036364413X670359

    Article  Google Scholar 

  34. Kuroda H, Maliga P (2003) The plastid clpP1 protease gene is essential for plant development. Nature 425:86–89. https://doi.org/10.1038/nature01909

    Article  PubMed  Google Scholar 

  35. Lanfear R, Frandsen PB, Wright AM, Senfeld T, Brett C (2017) PartitionFinder 2: new methods for selecting partitioned models for evolution for molecular and morphological phylogenetic analyses. Mol Biol Evol 34:772–773. https://doi.org/10.1093/molbev/msw260

    Article  PubMed  Google Scholar 

  36. Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452. https://doi.org/10.1093/bioinformatics/btp187

    Article  Google Scholar 

  37. Lopes AS, Pacheco TG, Santos KGD, Vieira LN, Guerra MP, Nodari RO, de Souza EM, Pedrosa FO, Rogalski M (2018a) The Linum usitatissimum L. plastome reveals atypical structural evolution, new editing sites, and the phylogenetic position of Linaceae within Malpighiales. Plant Cell Rep 37:307–328. https://doi.org/10.1007/s00299-017-2231-z

    Article  Google Scholar 

  38. Lopes AS, Pacheco TG, Silva ON, Cruz LM, Balsanelli E, Souza EM, Pedrosa FO, Rogalski M (2019) The plastomes of Astrocaryum aculeatum G. Mey. and A. murumuru Mart. show a flip-flop recombination between two short inverted repeats. Planta 250:1229–1246. https://doi.org/10.1007/s00425-019-03217

    Article  Google Scholar 

  39. Lopes AS, Pacheco TG, Vieira LN, Guerra MP, Nodari RO, de Souza EM, Pedrosa FO, Rogalski M (2018b) The Crambe abyssinica plastome: Brassicaceae phylogenomic analysis, evolution of RNA editing sites, hotspot and microsatellite characterization of the tribe Brassiceae. Gene 671:36–49. https://doi.org/10.1016/j.gene.2018.05.088

    Article  Google Scholar 

  40. Lorenz-Lemke AP, Muschner VC, Bonatto SL, Cervi AC, Salzano FM, Freitas LB (2005) Phylogeographic inferences concerning evolution of Brazilian Passiflora actinia and P. elegans (Passifloraceae) based on ITS (nrDNA) variation. Ann Bot 95:799–806. https://doi.org/10.1093/aob/mci079

    Article  PubMed  PubMed Central  Google Scholar 

  41. Lowe TM, Chan PP (2016) tRNAscan-SE on-line: search and contextual analysis of transfer RNA genes. Nucleic Acids Res 44:W54–57. https://doi.org/10.1093/nar/gkw413

    Article  PubMed  PubMed Central  Google Scholar 

  42. MacDougal JM, Feuillet C (2004) Systematics. In: Ulmer T, MacDougal JM (eds) Passiflora, passionflowers of the world. Timber, Portland, OR, pp 27–31

    Google Scholar 

  43. Madureira HC, Pereira TNS, Da Cunha M, Klein DE, de Oliveira MVV, de Mattos L, de Souza Filho GA (2014) Self-incompatibility in passion fruit: cellular responses in incompatible pollinations. Biologia 69:574–584. https://doi.org/10.2478/s11756-014-0353-0

    Article  Google Scholar 

  44. Meletti LMM, Soares-Scott MD, Bernacci LC, Passos IRS (2005) Melhoramento genético do maracujá: passado e futuro. In: Faleiro FG, Junqueira NTV, Braga MF (eds) Maracujá: Germoplasma e Melhoramento Genético. Embrapa Cerrados, Planaltina, Brazil, pp 55–78

    Google Scholar 

  45. Mondin CA, Cervi AC, Moreira Gilson RP (2011) Sinopse das espécies de Passiflora L. (Passifloraceae) do Rio Grande do Sul. Brasil R bras Bioci 9:3–27

    Google Scholar 

  46. Moreno JC, Martínez-Jaime S, Schwartzmann J, Karcher D, Tillich M, Graf A, Bock R (2018) Temporal proteomics of inducible RNAi lines of Clp protease subunits identifies putative protease substrates. Plant Physiol 176:1485–1508. https://doi.org/10.1104/pp.17.01635

    Article  PubMed  Google Scholar 

  47. Mower JP (2009) The PREP suite: predictive RNA editors for plant mitochondrial genes, chloroplast genes and user-defined alignments. Nucleic Acids Res 37:W253–W259. https://doi.org/10.1093/nar/gkp337

    Article  PubMed  PubMed Central  Google Scholar 

  48. Mráček J (2005) Investigation of genome–plastome incompatibility in Oenothera and Passiflora. PhD Thesis, Ludwig Maximilians-University, Munich

  49. Muschner VC, Lorenz-Lemke AP, Vecchia M, Bonatto SL, Salzano FM, Freitas LB (2006) Differential organellar inheritance in Passiflora’s (Passifloraceae) subgenera. Genetica 128:449–453. https://doi.org/10.1007/s10709-006-7726-4

    Article  PubMed  Google Scholar 

  50. Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ (2015) IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 32:268–274. https://doi.org/10.1093/molbev/msu300

    Article  PubMed  PubMed Central  Google Scholar 

  51. Ocampo J, Arias JC, Urrea R (2016) Interspecific hybridization between cultivated and wild species of genus Passiflora L. Euphytica 209:395–408. https://doi.org/10.1007/s10681-016-1647-9

    Article  Google Scholar 

  52. Pacheco TG, Lopes AS, Viana GDM, Silva ON, Silva GM, Vieira LN, Guerra MP, Nodari RO, Souza EM, Pedrosa FO, Otoni WC, Rogalski M (2019) Genetic, evolutionary and phylogenetic aspects of the plastome of annatto (Bixa orellana L.), the Amazonian commercial species of natural dyes. Planta 249:563–582. https://doi.org/10.1007/s00425-018-3023-6

    Article  Google Scholar 

  53. Qiao J, Cai M, Yan G, Wang N, Li F, Chen B, Gao G, Xu K, Li J, Wu X (2016) High-throughput multiplex cpDNA resequencing clarifies the genetic diversity and genetic relationships among Brassica napus, Brassica rapa and Brassica oleracea. Plant Biotechnol J 14:409–418. https://doi.org/10.1111/pbi.12395

    Article  PubMed  Google Scholar 

  54. Rabah SO, Shrestha B, Hajrah NH, Sabir MJ, Alharby HF, Sabir MJ, Alhebshi AM, Sabir JSM, Gilbert LE, Ruhlman TA, Jansen RK (2019) Passiflora plastome sequencing reveals widespread genomic rearrangements. J Syst Evol 57:1–14. https://doi.org/10.1111/jse.12425

    Article  Google Scholar 

  55. Ramaiya SD, Bujang JS, Zakaria MH (2014) Genetic diversity in Passiflora species assessed by morphological and ITS sequence analysis. Sci World J 2014:1–11. https://doi.org/10.1155/2014/598313

    Article  Google Scholar 

  56. Rocha DI, Batista DS, Faleiro FG, Rogalski M, Ribeiro LM, Mercadante-Simões MO, Yockteng R, Silva ML, Soares WS, Pinheiro MVM, Pacheco TG, Lopes AS, Viccini LF, Otoni WC (2020) Passiflora spp. passionfruit. In: Litz RE, Alfaro FP, Hormaza JI (Org.) Biotechnology of fruit and nut crops, 2 edn. CABI, Oxfordshire, pp 381–408

  57. Rockenbach K, Havird JC, Monroe JG, Triant DA, Taylor DR, Sloan DB (2016) Positive selection in rapidly evolving plastid-nuclear enzyme complexes. Genetics 204:1507–1522. https://doi.org/10.1534/genetics.116.188268

    Article  PubMed  PubMed Central  Google Scholar 

  58. Rogalski M, Carrer H (2011) Engineering plastid fatty acid biosynthesis to improve food quality and biofuel production in higher plants. Plant Biotechnol J 9:554–564. https://doi.org/10.1111/j.1467-7652.2011.00621.x

    Article  PubMed  Google Scholar 

  59. Rogalski M, Karcher D, Bock R (2008a) Superwobbling facilitates translation with reduced tRNA sets. Nat Struct Mol Biol 15:192–198. https://doi.org/10.1038/nsmb.1370

    Article  PubMed  Google Scholar 

  60. Rogalski M, Ruf S, Bock R (2006) Tobacco plastid ribosomal protein S18 is essential for cell survival. Nucleic Acids Res 34:4537–4545. https://doi.org/10.1093/nar/gkl634

    Article  PubMed  PubMed Central  Google Scholar 

  61. Rogalski M, Schottler MA, Thiele W, Schulze WX, Bock R (2008b) Rpl33, a nonessential plastid-encoded ribosomal protein in tobacco, is required under cold stress conditions. Plant Cell 20:2221–2237. https://doi.org/10.1105/tpc.108.060392

    Article  PubMed  PubMed Central  Google Scholar 

  62. Rogalski M, Vieira LN, Fraga HP, Guerra MP (2015) Plastid genomics in horticultural species: importance and applications for plant population genetics, evolution, and biotechnology. Front Plant Sci 6:586. https://doi.org/10.3389/fpls.2015.00586

    Article  PubMed  PubMed Central  Google Scholar 

  63. Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Hohna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61:539–542. https://doi.org/10.1093/sysbio/sys029

    Article  PubMed  PubMed Central  Google Scholar 

  64. Schmitz-Linneweber C, Kushnir S, Babiychuk E, Poltnigg P, Herrmann RG, Maier RM (2005) Pigment deficiency in nightshade/tobacco cybrids is caused by the failure to edit the plastid ATPase α-subunit mRNA. Plant Cell 17:1815–1828. https://doi.org/10.1105/tpc.105.032474

    Article  PubMed  PubMed Central  Google Scholar 

  65. Shikanai T (2006) RNA editing in plant organelles: machinery, physiological function and evolution. Cell Mol Life Sci 63:698–708. https://doi.org/10.1007/s00018-005-5449-9

    Article  PubMed  Google Scholar 

  66. Shikanai T, Shimizu K, Ueda K, Nishimura Y, Kuroiwa T, Hashimoto T (2001) The chloroplast clpP gene, encoding a proteolytic subunit of ATP-dependent protease, is indispensable for chloroplast development in tobacco. Plant Cell Physiol 42:264–273. https://doi.org/10.1093/pcp/pce031

    Article  PubMed  Google Scholar 

  67. Shoji S, Dambacher CM, Shajani Z, Williamson JR, Schultz PG (2011) Systematic chromosomal deletion of bacterial ribosomal protein genes. J Mol Biol 413:751–761. https://doi.org/10.1016/j.jmb.2011.09.004

    Article  PubMed  PubMed Central  Google Scholar 

  68. Shrestha B, Weng ML, Theriot EC, Gilbert LE, Ruhlman TA, Krosnick SE, Jansen RK (2019) Highly accelerated rates of genomic rearrangements and nucleotide substitutions in plastid genomes of Passiflora subgenus Decaloba. Mol Phylogenet Evol 138:53–64. https://doi.org/10.1016/j.ympev.2019.05.030

    Article  PubMed  Google Scholar 

  69. Stefenon VM, Klabunde G, Lemos RPM, Rogalski M, Nodari RO (2019) Phylogeography of plastid DNA sequences suggests post-glacial southward demographic expansion and the existence of several glacial refugia for Araucaria angustifolia. Sci Rep 9:2752. https://doi.org/10.1038/s41598-019-39308-w

    Article  PubMed  PubMed Central  Google Scholar 

  70. Sun T, Bentolila S, Hanson MR (2016) The unexpected diversity of plant organelle RNA editosomes. Trends Plant Sci 21(11):962–973. https://doi.org/10.1016/j.tplants.2016.07.005

    Article  PubMed  Google Scholar 

  71. Sun YK, Gutmann B, Yap A, Kindgren P, Small I (2018) Editing of chloroplast rps14 by PPR editing factor EMB2261 is essential for Arabidopsis development. Front Plant Sci 9:841. https://doi.org/10.3389/fpls.2018.00841

    Article  PubMed  PubMed Central  Google Scholar 

  72. Swiatecka-Hagenbruch M, Emanuel C, Hedtke B, Liere K, Börner T (2008) Impaired function of the phage-type RNA polymerase RpoTp in transcription of chloroplast genes is compensated by a second phage-type RNA polymerase. Nucleic Acids Res 36:785–792. https://doi.org/10.1093/nar/gkm1111

    Article  PubMed  Google Scholar 

  73. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729. https://doi.org/10.1093/molbev/mst197

    Article  PubMed  PubMed Central  Google Scholar 

  74. Vieira LN, Dos Anjos KG, Faoro H, Fraga HP, Greco TM, Pedrosa FO, de Souza EM, Rogalski M, de Souza RF, Guerra MP (2016a) Phylogenetic inference and SSR characterization of tropical woody bamboos tribe Bambuseae (Poaceae: Bambusoideae) based on complete plastid genome sequences. Curr Genet 62:443–453. https://doi.org/10.1007/s00294-015-0549-z

    Article  Google Scholar 

  75. Vieira LN, Faoro H, Fraga HPF, Rogalski M, de Souza EM, de Oliveira PF, Nodari RO, Guerra MP (2014) An improved protocol for intact chloroplasts and cpDNA isolation in conifers. PLoS ONE 9:e84792. https://doi.org/10.1371/journal.pone.0084792

    Article  PubMed Central  Google Scholar 

  76. Vieira LN, Rogalski M, Faoro H, Fraga HP, Anjos KG, Picchi GFA, Nodari RO, Pedrosa FO, Souza EM, Guerra MP (2016b) The plastome sequence of the endemic Amazonian conifer, Retrophyllum piresii (Silba) C.N.Page, reveals different recombination events and plastome isoforms. Tree Genet Genomes 12:10. https://doi.org/10.1007/s11295-016-0968-0

    Article  Google Scholar 

  77. Wicke S, Schneeweiss GM, dePamphilis CW, Müller KF, Quandt D (2011) The evolution of the plastid chromosome in land plants: gene content, gene order, gene function. Plant Mol Biol 76:273–297. https://doi.org/10.1007/s11103-011-9762-4

    Article  PubMed  PubMed Central  Google Scholar 

  78. Wyman SK, Jansen RK, Boore JL (2004) Automatic annotation of organellar genomes with DOGMA. Bioinformatics 20:3252–3255. https://doi.org/10.1093/bioinformatics/bth352

    Article  PubMed  PubMed Central  Google Scholar 

  79. Yockteng R, Deeckenbrugge GC, Souza-Chies TT (2011) Passiflora. In: Kole C (ed) Wild crop relatives: genomic and breeding resources. Springer, Berlin, pp 129–171

    Google Scholar 

  80. Zhu A, Guo W, Gupta S, Fan W, Mower JP (2016) Evolutionary dynamics of the plastid inverted repeat: the effects of expansion, contraction, and loss on substitution rates. New Phytol 209:1747–1756. https://doi.org/10.1111/nph.13743

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Council for Scientific and Technological Development, Brazil (CNPq—Grants 459698/2014-1, 310654/2018-1 and 436407/2018-3). We are grateful to INCT-FBN and for the scholarships granted by the CNPq to ASL, TGP, LNV, WCO, MPG, RON, EB, FOP, EMS, and MR. We are also grateful to the Núcleo de Análise de Biomoléculas (NuBiomol) of the Universidade Federal de Viçosa for providing the CLC Genomics software.

Author information

Affiliations

Authors

Contributions

TGP, ASL, EMS, FOP, and MR conceived and designed the research. TGP, ASL, JFW, KSCY, EB, EMS, LNV, WCO, and MR conducted experiments and analyzed the data. EMS, FOP, MPG, RON, and MR contributed with reagents and materials. TGP, ASL, WCO, and MR wrote the manuscript. All authors read and approved the manuscript.

Corresponding author

Correspondence to Marcelo Rogalski.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 23643 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pacheco, T.G., Lopes, A.S., Welter, J.F. et al. Plastome sequences of the subgenus Passiflora reveal highly divergent genes and specific evolutionary features. Plant Mol Biol (2020). https://doi.org/10.1007/s11103-020-01020-z

Download citation

Keywords

  • Passifloraceae
  • Organelle DNA
  • Genetic incompatibility
  • Plastome evolution
  • Polymorphism hotspots