Skip to main content
Log in

Ethylene response factors Pp4ERF24 and Pp12ERF96 regulate blue light-induced anthocyanin biosynthesis in ‘Red Zaosu’ pear fruits by interacting with MYB114

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Key message

Pp4ERF24 and Pp12ERF96 fine tune blue light-induced anthocyanin biosynthesis via interacting with PpMYB114 and promoting the interaction between PpMYB114 and PpbHLH3, which enhances the expression of PpMYB114-induced PpUFGT.

Abstract

The red coloration of pear fruit is attributed to anthocyanin accumulation, which is transcriptionally regulated by the MYB-bHLH-WD40 complex. A number of ethylene response factors (ERF) have been identified to regulate anthocyanin biosynthesis in different plants. In pear, several ERF transcription factor genes were identified to be potentially involved in the light-induced anthocyanin biosynthesis according to transcriptome data. But the molecular mechanism of these ERFs underlying the regulation of anthocyanin accumulation is unknown. In this study, exposure of ‘Red Zaosu’ pear, a mutant of ‘Zaosu’ pear, to blue light significantly induced the anthocyanin accumulation by increasing the expression levels of anthocyanin biosynthetic genes. Gene expression analysis confirmed that the expression of Pp4ERF24 and Pp12ERF96 genes were up-regulated in the process of blue light-induced anthocyanin biosynthesis. Yeast two-hybrid and bimolecular fluorescence complementation assay revealed that Pp4ERF24 and Pp12ERF96 interacted with PpMYB114, but not with PpMYB10. Bimolecular fluorescence complementation assay demonstrated that the interaction between these two ERFs and PpMYB114 enhanced the interaction between PpMYB114 and PpbHLH3. Further analysis by dual luciferase assay verified that these two ERFs increased the up-regulation of PpMYB114-mediated PpUFGT expression. Furthermore, co-transformation of Pp12ERF96 with PpMYB114 and PpbHLH3 in tobacco leaves led to enhanced anthocyanin accumulation. Transient overexpression of Pp4ERF24 or Pp12ERF96 alone in ‘Red Zaosu’ pear fruit also induced anthocyanin biosynthesis in pear peel. Our findings provide insights into a mechanism involving the synergistic interaction of ERFs with PpMYB114 to regulate light-dependent coloration and anthocyanin biosynthesis in pear fruits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ERF:

Ethylene response factor

UFGT:

UDP-glucose: flavonoid 3-glucosyltransferase

EBG:

Early biosynthetic gene

LBG:

Late biosynthetic gene

PAL:

Phenylalanine ammonia lyase

CHS:

Chalcone synthase

CHI:

Chalcone isomerase

F3′H:

Flavanone 3′-hydroxylase

DFR:

Dihydroflavonol 4-reductase

ANS:

Anthocyanin synthase

bHLH:

Basic helix-loop-helix

DAFB:

Days after full bloom

References

  • Allan AC, Hellens RP, Laing WA (2008) MYB transcription factors that colour our fruit. Trends Plant Sci 13:99–102

    Article  CAS  PubMed  Google Scholar 

  • An X, Tian Y, Chen K, Liu XJ, Liu DD, Xie X, Cheng CG, Cong P, Hao Y (2015) MdMYB9 and MdMYB11 are involved in the regulation of the JA-induced biosynthesis of anthocyanin and proanthocyanidin in apples. Plant Cell Physiol 56:650–662

    Article  CAS  PubMed  Google Scholar 

  • An J, Liu X, Li H, You C, Wang X, Hao Y (2017a) Apple RING E3 ligase MdMIEL1 inhibits anthocyanin accumulation by ubiquitinating and degrading MdMYB1 protein. Plant Cell Physiol 58:1953–1962

    Article  CAS  PubMed  Google Scholar 

  • An J, Qu F, Yao J, Wang X, You C, Wang X, Hao Y (2017b) The bZIP transcription factor MdHY5 regulates anthocyanin accumulation and nitrate assimilation in apple. Hortic Res 4:17023

    Article  PubMed  PubMed Central  Google Scholar 

  • An J, Wang X, Li Y, Song L, Zhao L, You C, Hao Y (2018) EIN3-LIKE1, MYB1, and ETHYLENE RESPONSE FACTOR3 act in a regulatory loop that synergistically modulates ethylene biosynthesis and anthocyanin accumulation. Plant Physiol 178:808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bai S, Saito T, Honda C, Hatsuyama Y, Ito A, Moriguchi T (2014) An apple B-box protein, MdCOL11, is involved in UV-B- and temperature-induced anthocyanin biosynthesis. Planta 240:1051–1062

    Article  CAS  PubMed  Google Scholar 

  • Bai S, Sun Y, Qian M, Yang F, Ni J, Tao R, Li L, Shu Q, Zhang D, Teng Y (2017) Transcriptome analysis of bagging-treated red Chinese sand pear peels reveals light-responsive pathway functions in anthocyanin accumulation. Sci Rep 7:63. https://doi.org/10.1038/s41598-017-00069-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ballester A, Molthoff J, de Vos R, Hekkert B, Orzaez D, Fernandez-Moreno J, Tripodi P, Grandillo S, Martin C, Heldens J, Ykema M, Granell A, Bovy A (2010) Biochemical and molecular analysis of pink tomatoes: deregulated expression of the gene encoding transcription factor SlMYB12 leads to pink tomato fruit color. Plant Physiol 152:71–84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chattopadhyay S, Ang L, Puente P, Deng X, Wei N (1998) Arabidopsis bZIP protein HY5 directly interacts with light-responsive promoters in mediating light control of gene expression. Plant Cell 10:673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Espley RV, Brendolise C, Chagne D, Kutty-Amma S, Green S, Volz R, Putterill J, Schouten HJ, Gardiner SE, Hellens RP, Allan AC (2009) Multiple repeats of a promoter segment causes transcription factor autoregulation in red apples. Plant Cell 21:168–183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feng S, Wang Y, Yang S, Xu Y, Chen X (2010) Anthocyanin biosynthesis in pears is regulated by a R2R3-MYB transcription factor PyMYB10. Planta 232:245–255

    Article  CAS  PubMed  Google Scholar 

  • Hu D, Sun C, Zhang Q, An J, You C, Hao Y (2016) Glucose sensor MdHXK1 phosphorylates and stabilizes MdbHLH3 to promote anthocyanin biosynthesis in apple. PLoS Genet 12:e1006273. https://doi.org/10.1371/journal.pgen.1006273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang C, Yu B, Teng Y, Su J, Shu Q, Cheng Z, Zeng L (2009) Effects of fruit bagging on coloring and related physiology, and qualities of red Chinese sand pears during fruit maturation. Sci Hortic 121:149–158. https://doi.org/10.1016/j.scienta.2009.01.031

    Article  Google Scholar 

  • Jaakola L (2013) New insights into the regulation of anthocyanin biosynthesis in fruits. Trends Plant Sci 18:477–483

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi S, Ishimaru M, Hiraoka K, Honda C (2002) Myb-related genes of the Kyoho grape (Vitis labruscana) regulate anthocyanin biosynthesis. Planta 215:924–933. https://doi.org/10.1007/s00425-002-0830-5

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi S, Goto-Yamamoto N, Hirochika H (2004) Retrotransposon-induced mutations in grape skin color. Science 304:982

    Article  PubMed  Google Scholar 

  • Koyama T, Sato F (2018) The function of ETHYLENE RESPONSE FACTOR genes in the light-induced anthocyanin production of Arabidopsis thaliana leaves. Plant Biotechnol 35:87–91. https://doi.org/10.5511/plantbiotechnology.18.0122b

    Article  CAS  Google Scholar 

  • Li S, Zachgo S (2013) TCP3 interacts with R2R3-MYB proteins, promotes flavonoid biosynthesis and negatively regulates the auxin response in Arabidopsis thaliana. Plant J 76:901–913. https://doi.org/10.1111/tpj.12348

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Mao K, Zhao C, Zhao X, Zhang H, Shu H, Hao Y (2012) MdCOP1 ubiquitin E3 ligases interact with MdMYB1 to regulate light-induced anthocyanin biosynthesis and red fruit coloration in apple. Plant Physiol 160:1011–1022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li S, Wang W, Gao J, Yin K, Wang R, Wang C, Petersen M, Mundy J, Qiu J (2016a) MYB75 phosphorylation by MPK4 is required for light-induced anthocyanin accumulation in Arabidopsis. Plant Cell 28:2866–2883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li T, Jiang Z, Zhang L, Tan D, Wei Y, Yuan H, Li T, Wang A (2016b) Apple (Malus domestica) MdERF2 negatively affects ethylene biosynthesis during fruit ripening by suppressing MdACS1 transcription. Plant J 88:735–748

    Article  CAS  PubMed  Google Scholar 

  • Li T, Xu Y, Zhang L, Ji Y, Tan D, Yuan H, Wang A (2017) The jasmonate-activated transcription factor MdMYC2 regulates ETHYLENE RESPONSE FACTOR and ethylene biosynthetic genes to promote ethylene biosynthesis during apple fruit ripening. Plant Cell 29:1316–1334. https://doi.org/10.1105/tpc.17.00349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li X, Tao S, Wei S, Ming M, Huang X, Zhang S, Wu J (2018) The mining and evolutionary investigation of AP2/ERF genes in pear (Pyrus). BMC Plant Biol 18:46. https://doi.org/10.1186/s12870-018-1265-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−∆∆CT method. Methods 25:402–408. https://doi.org/10.1006/meth.2001.1262

    Article  CAS  Google Scholar 

  • Maier A, Schrader A, Kokkelink L, Falke C, Welter B, Iniesto E, Rubio V, Uhrig JF, Hülskamp M, Hoecker U (2013) Light and the E3 ubiquitin ligase COP1/SPA control the protein stability of the MYB transcription factors PAP1 and PAP2 involved in anthocyanin accumulation in Arabidopsis. Plant J 74:638–651

    Article  CAS  PubMed  Google Scholar 

  • Nakano T, Suzuki K, Fujimura T, Shinshi H (2006) Genome-wide analysis of the ERF gene family in Arabidopsis and rice. Plant Physiol 140:411–432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qian M, Sun Y, Allan AC, Teng Y, Zhang D (2014) The red sport of ‘Zaosu’ pear and its red-striped pigmentation pattern are associated with demethylation of the PyMYB10 promoter. Phytochemistry 107:16–23

    Article  CAS  PubMed  Google Scholar 

  • Shin DH, Choi M, Kim K, Bang G, Cho M, Choi S, Choi G, Park YI (2013) HY5 regulates anthocyanin biosynthesis by inducing the transcriptional activation of the MYB75/PAP1 transcription factor in Arabidopsis. FEBS Lett 587:1543–1547

    Article  CAS  PubMed  Google Scholar 

  • Steyn W, Wand S, Holcroft D, Jacobs G (2005) Red colour development and loss in pears. Acta Hortic 671:79–85. https://doi.org/10.17660/ActaHortic.2005.671.9

    Article  CAS  Google Scholar 

  • Takos AM, Jaffé FW, Jacob SR, Bogs J, Robinson SP, Walker AR (2006) Light-induced expression of a MYB gene regulates anthocyanin biosynthesis in red apples. Plant Physiol 142:1216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tao R, Bai S, Ni J, Yang Q, Zhao Y, Teng Y (2018) The blue light signal transduction pathway is involved in anthocyanin accumulation in ‘Red Zaosu’ pear. Planta 248:37–48. https://doi.org/10.1007/s00425-018-2877-y

    Article  CAS  PubMed  Google Scholar 

  • Walker AR, Lee E, Bogs J, McDavid DAJ, Thomas MR, Robinson SP (2007) White grapes arose through the mutation of two similar and adjacent regulatory genes. Plant J 49:772–785. https://doi.org/10.1111/j.1365-313x.2006.02997.x

    Article  CAS  PubMed  Google Scholar 

  • Winkel-Shirley B (2001) Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiol 126:485–493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie X, Li S, Zhang R, Zhao J, Chen Y, Zhao Q, Yao Y, You C, Zhang X, Hao Y (2012) The bHLH transcription factor MdbHLH3 promotes anthocyanin accumulation and fruit colouration in response to low temperature in apples. Plant Cell Environ 35:1884–1897

    Article  CAS  PubMed  Google Scholar 

  • Xu W, Dubos C, Lepiniec L (2015) Transcriptional control of flavonoid biosynthesis by MYB-bHLH-WDR complexes. Trends Plant Sci 20:176–185

    Article  CAS  PubMed  Google Scholar 

  • Yao G, Ming M, Allan AC, Gu C, Li L, Wu X, Wang R, Chang Y, Qi K, Zhang S, Wu J (2017) Map-based cloning of the pear gene MYB114 identifies an interaction with other transcription factors to coordinately regulate fruit anthocyanin biosynthesis. Plant J 92:437–451

    Article  CAS  PubMed  Google Scholar 

  • Zeng J, Li X, Xu Q, Chen J, Yin X, Ferguson IB, Chen K (2015) /ERF gene, is a novel regulator of fruit lignification induced by chilling injury, via interaction with EjMYB transcription factors. Plant Biotechnol J 13:1325–1334.

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Zheng S, Liu Z, Wang L, Bi Y (2011) Both HY5 and HYH are necessary regulators for low temperature-induced anthocyanin accumulation in Arabidopsis seedlings. J Plant Physiol 168:367–374

    Article  CAS  PubMed  Google Scholar 

  • Zhang D, Yu B, Bai JH, Qian MJ, Shu Q, Su J, Teng YW (2012) Effects of high temperatures on UV-B/visible irradiation induced postharvest anthocyanin accumulation in ‘Yunhongli No. 1’ (Pyrus pyrifolia Nakai) pears. Sci Hortic 134:53–59

    Article  CAS  Google Scholar 

  • Zheng Y, Li J, Xin H, Wang N, Guan L, Wu B, Li S (2013) Anthocyanin profile and gene expression in berry skin of two red Vitis vinifera grape cultivars that are sunlight dependent versus sunlight independent. Aust J Grape Wine Res 19:238–248

    Article  CAS  Google Scholar 

  • Zhou L, Li Y, Zhang R, Zhang C, Xie X, Zhao C, Hao Y (2017) The small ubiquitin-like modifier E3 ligase MdSIZ1 promotes anthocyanin accumulation by sumoylating MdMYB1 under low-temperature conditions in apple. Plant Cell Environ 40:2068–2080

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (Grant Nos. 31471852 to YT and 31772272 to SB) and the Earmarked Fund for China Agriculture Research System (CARS-28).

Author information

Authors and Affiliations

Authors

Contributions

JN, SB, and YT conceived and planned the study. RT and LY helped collect samples and extracted the total RNA. JN and YZ completed the qPCR, vector construction, and bioinformatics analysis. JN and LG conducted the Y2H, BiFC, dual luciferase, firefly luciferase complementation imaging assays and the transient transformation assay of gene function in tobacco leaves and ‘Red Zaosu’ fruits. JN, SB, MQ and YT wrote the manuscript. All of the authors read and approved the final manuscript.

Corresponding author

Correspondence to Yuanwen Teng.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 14 KB)

Supplementary material 2 (DOCX 13 KB)

Supplementary material 3 (DOCX 14 KB)

11103_2018_802_MOESM4_ESM.pdf

(A) Phylogenetic analysis of ERF proteins from ‘Red Zaosu’ pear (PpERF) and Prunus persica (PpeERF). (B) Pp4ERF24, Pp12ERF96, Pp12ERF100, and Pp1ERF1 expression patterns based on ‘Meirensu’ transcriptome data. Supplementary material 4 (PDF 721 KB)

11103_2018_802_MOESM5_ESM.pdf

(A) A yeast two-hybrid (Y2H) assay revealed that Pp4ERF24, Pp12ERF96, Pp12ERF100, and Pp1ERF1 did not interact with PpMYB10. The pGADT7-T and pGBKT7-53 vectors were used as the positive control, while the AD and MYB10-BD combination served as the negative control. Blue plaques indicated an interaction between two proteins. The basal AbA concentration was 200 ng ml−1. (B) A Y2H assay confirmed that PpMYB114, Pp12ERF96, Pp12ERF100, and Pp1ERF1 underwent an auto-activation. The BD vector was used as the negative control. Supplementary material 5 (PDF 4485 KB)

11103_2018_802_MOESM6_ESM.pdf

Analysis of the Pp4ERF24 and Pp12ERF96 promoters revealed several light-responsive elements. Supplementary material 6 (PDF 713 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ni, J., Bai, S., Zhao, Y. et al. Ethylene response factors Pp4ERF24 and Pp12ERF96 regulate blue light-induced anthocyanin biosynthesis in ‘Red Zaosu’ pear fruits by interacting with MYB114. Plant Mol Biol 99, 67–78 (2019). https://doi.org/10.1007/s11103-018-0802-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-018-0802-1

Keywords

Navigation