Skip to main content
Log in

A ripening-induced SlGH3-2 gene regulates fruit ripening via adjusting auxin-ethylene levels in tomato (Solanum lycopersicum L.)

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Key message

Silencing of SlGH3-2 in tomato alters auxin and ethylene levels during fruit ripening and cause reduced lycopene accumulation in the transgenic fruits.

Abstract

While auxin’s role during fleshy fruit ripening is widely acknowledged to be important, the physiological functions of several ripening-induced genes, especially those involved in the maintenance of cellular auxin homeostasis, largely remain under-explored. In the present study, the updated inventory shows that 24 members constitute the Gretchen-Hagen 3 (GH3) gene family in tomato. Their characterization using an expression profiling approach revealed that SlGH3-2, a member of the group II IAA-amido synthetase, is strongly induced at the commencement of fruit ripening. Phylogenetic analysis and homology modeling revealed that SlGH3-2 is the closest homolog of pepper CcGH3 and grapevine VvGH3-1. Expression profiling revealed that the mRNA level of SlGH3-2 is inhibited in ripening mutants such as ripening-inhibitor (rin) and Never-ripe (Nr). Whereas both auxin and ethylene were found to act as positive regulators of its transcript accumulation. The fruits of 35S::SlGH3-2 RNAi lines exhibited prolonged shelf-life. Both ethylene production and lycopene accumulation were affected in the fruits of SlGH3-2 silenced lines. These observations were corroborated by the altered expression of key ethylene and carotenoid biosynthesis genes such as ACS2 and PSY1, respectively, in the RNAi lines. Additionally, the SlGH3-2 silenced line fruits had higher IAA and IBA levels at the ripening stages, and showed increased transcript accumulation of several known auxin-induced SlIAA and SlGH3 genes. Altogether, the present study suggests that SlGH3-2 influences fruit ripening in tomato via modulating ethylene and auxin crosstalk, especially during the early phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ARF:

Auxin response factor

CNR:

Colorless non-ripening

FUL1 and FUL2:

Fruitful homologs

GH3:

Gretchen hagen 3

GLK:

Golden like gene

IAA:

Indole-3-acetic acid

Nr:

Never-ripe

rin:

Ripening-inhibitor

RNAi :

RNA interference

TAGL1:

Tomato agamous like 1

ACS2:

1-Aminocyclopropane-1-carboxylate synthase2

ACO1:

1-Aminocyclopropane-1-carboxylate oxidase1

CRTISO:

Carotenoid isomerase

PSY1:

Phytoene synthase1

CYCB:

lycopene β-cyclase

References

  • Alba R, Payton P, Fei Z, McQuinn R, Debbie P, Martin GB, Tanksley SD, Giovannoni JJ (2005) Transcriptome and selected metabolite analyses reveal multiple points of ethylene control during tomato fruit development. Plant Cell 17:2954–2965

    Article  CAS  Google Scholar 

  • Bemer M, Karlova R, Ballester AR, Tikunov YM, Bovy AG, Wolters-Arts M, Rossetto Pde B, Angenent GC, de Maagd RA (2012) The tomato FRUITFULL homologs TDR4/FUL1 and MBP7/FUL2 regulate ethylene-independent aspects of fruit ripening. Plant Cell 24:4437–4451

    Article  CAS  Google Scholar 

  • Bottcher C, Keyzers RA, Boss PK, Davies C (2010) Sequestration of auxin by the indole-3-acetic acid-amido synthetase GH3-1 in grape berry (Vitis vinifera L.) and the proposed role of auxin conjugation during ripening. J Exp Bot 61:3615–3625

    Article  Google Scholar 

  • Bottcher C, Boss PK, Davies C (2011) Acyl substrate preferences of an IAA-amido synthetase account for variations in grape (Vitis vinifera L.) berry ripening caused by different auxinic compounds indicating the importance of auxin conjugation in plant development. J Exp Bot 62:4267–4280

    Article  CAS  Google Scholar 

  • Bottcher C, Burbidge CA, Boss PK, Davies C (2013) Interactions between ethylene and auxin are crucial to the control of grape (Vitis vinifera L.) berry ripening. BMC Plant Biol 13:222

    Article  Google Scholar 

  • Breitel DA, Chappell-Maor L, Meir S, Panizel I, Puig CP, Hao Y, Yifhar T, Yasuor H, Zouine M, Bouzayen M, Granell Richart A, Rogachev I, Aharoni A (2016) AUXIN RESPONSE FACTOR 2 intersects hormonal signals in the regulation of tomato fruit ripening. PLoS Genet 12:e1005903

    Article  Google Scholar 

  • Buta JG, Spaulding DW (1994) Changes in indole-3-acetic acid and abscisic acid levels during tomato (Lycopersicon esculentum Mill.) fruit development and ripening. J Plant Growth Regul 13:163–166

    Article  CAS  Google Scholar 

  • Davies C, Boss PK, Robinson SP (1997) Treatment of grape berries, a nonclimacteric fruit with a synthetic auxin, retards ripening and alters the expression of developmentally regulated genes. Plant Physiol 115:1155–1161

    Article  CAS  Google Scholar 

  • Deytieux-Belleaum C, Gagne S, L’Hyvernay A, Done`che B, Geny L (2007) Possible roles of both abscisic acid and indol-acetic acid in controlling grape berry ripening process. J Int des Sci de la Vigne et du Vin 41:141–148

    Google Scholar 

  • Ding X, Cao Y, Huang L, Zhao J, Xu C, Li X, Wang S (2008) Activation of the indole-3-acetic acid-amido synthetase GH3-8 suppresses expansin expression and promotes salicylate- and jasmonate-independent basal immunity in rice. Plant Cell 20:228–240

    Article  CAS  Google Scholar 

  • Dubouzet JG, Matsuda F, Ishihara A, Miyagawa H, Wakasa K (2013) Production of indole alkaloids by metabolic engineering of the tryptophan pathway in rice. Plant Biotechnol J 11:1103–1111

    Article  CAS  Google Scholar 

  • Fraser PD, Truesdale MR, Bird CR, Schuch W, Bramley PM (1994) Carotenoid biosynthesis during tomato fruit development (evidence for tissue-specific gene expression). Plant Physiol 105:405–413

    Article  CAS  Google Scholar 

  • Fujisawa M, Shima Y, Nakagawa H, Kitagawa M, Kimbara J, Nakano T, Kasumi T, Ito Y (2014) Transcriptional regulation of fruit ripening by tomato FRUITFULL homologs and associated MADS box proteins. Plant Cell 26:89–101

    Article  CAS  Google Scholar 

  • Gillaspy G, Ben-David H, Gruissem W (1993) Fruits: a developmental perspective. Plant Cell 5:1439–1451

    Article  Google Scholar 

  • Given NK, Venis MA, Gierson D (1988) Hormonal regulation of ripening in the strawberry, a non-climacteric fruit. Planta 174:402–406

    Article  CAS  Google Scholar 

  • Guillon F, Philippe S, Bouchet B, Devaux MF, Frasse P, Jones B, Bouzayen M, Lahaye M (2008) Down-regulation of an auxin response factor in the tomato induces modification of fine pectin structure and tissue architecture. J Exp Bot 59:273–288

    Article  CAS  Google Scholar 

  • Hao Y, Hu G, Breitel D, Liu M, Mila I, Frasse P, Fu Y, Aharoni A, Bouzayen M, Zouine M (2016) Auxin response factor SlARF2 Is an essential component of the regulatory mechanism controlling fruit ripening in tomato. PLoS Genet 11:e1005649

    Article  Google Scholar 

  • Isaacson T, Kosma DK, Matas AJ, Buda GJ, He Y, Yu B, Pravitasari A, Batteas JD, Stark RE, Jenks MA, Rose JK (2009) Cutin deficiency in the tomato fruit cuticle consistently affects resistance to microbial infection and biomechanical properties, but not transpirational water loss. Plant J 60:363–377

    Article  CAS  Google Scholar 

  • Ito Y, Nishizawa-Yokoi A, Endo M, Mikami M, Shima Y, Nakamura N, Kotake-Nara E, Kawasaki S, Toki S (2017) Re-evaluation of the rin mutation and the role of RIN in the induction of tomato ripening. Nat Plants 3:866–874

    Article  CAS  Google Scholar 

  • Jones B, Frasse P, Olmos E, Zegzouti H, Li ZG, Latche A, Pech JC, Bouzayen M (2002) Down-regulation of DR12, an auxin-response-factor homolog, in the tomato results in a pleiotropic phenotype including dark green and blotchy ripening fruit. Plant J 32:603–613

    Article  CAS  Google Scholar 

  • Karlova R, Rosin FM, Busscher-Lange J, Parapunova V, Do PT, Fernie AR, Fraser PD, Baxter C, Angenent GC, de Maagd RA (2011) Transcriptome and metabolite profiling show that APETALA2a is a major regulator of tomato fruit ripening. Plant Cell 23:923–941

    Article  CAS  Google Scholar 

  • Katz YS, Galili G, Amir R (2006) Regulatory role of cystathionine-gamma-synthase and de novo synthesis of methionine in ethylene production during tomato fruit ripening. Plant Mol Biol 61:255–268

    Article  CAS  Google Scholar 

  • Kilambi HV, Kumar R, Sharma R, Sreelakshmi Y (2013) Chromoplast-specific carotenoid-associated protein appears to be important for enhanced accumulation of carotenoids in hp1 tomato fruits. Plant Physiol 161:2085–2101

    Article  CAS  Google Scholar 

  • Kumar R, Tyagi AK, Sharma AK (2011) Genome-wide analysis of auxin response factor (ARF) gene family from tomato and analysis of their role in flower and fruit development. Mol Genet Genom 285:245–260

    Article  CAS  Google Scholar 

  • Kumar R, Agarwal P, Tyagi AK, Sharma AK (2012a) Genome-wide investigation and expression analysis suggest diverse roles of auxin-responsive GH3 genes during development and response to different stimuli in tomato (Solanum lycopersicum). Mol Genet Genomics 287:221–235

    Article  CAS  Google Scholar 

  • Kumar R, Sharma MK, Kapoor S, Tyagi AK, Sharma AK (2012b) Transcriptome analysis of rin mutant fruit and in silico analysis of promoters of differentially regulated genes provides insight into LeMADS-RIN-regulated ethylene-dependent as well as ethylene-independent aspects of ripening in tomato. Mol Genet Genom 287:189–203

    Article  CAS  Google Scholar 

  • Kumar R, Khurana A, Sharma AK (2014) Role of plant hormones and their interplay in development and ripening of fleshy fruits. J Exp Bot 65:4561–4575

    Article  CAS  Google Scholar 

  • Kumar R, Agarwal P, Pareek A, Tyagi AK, Sharma AK (2015) Genomic survey, gene expression, and interaction analysis suggest diverse roles of ARF and Aux/IAA proteins in Solanaceae. Plant Mol Biol Rep 33:1552–1572

    Article  CAS  Google Scholar 

  • Kumar R, Kumar P, Khurana A (2016) Identification and expression profiling of DNA methyltransferases during development and stress conditions in Solanaceae. Funct Integr Genom 16(5):513–528

    Article  CAS  Google Scholar 

  • Li J, Tao X, Li L, Mao L, Luo Z, Khan ZU, Ying T (2015) Comprehensive RNA-Seq analysis on the regulation of tomato ripening by exogenous auxin. PLoS ONE 11:e0156453

    Article  Google Scholar 

  • Liao D, Chen X, Chen A, Wang H, Liu J, Gu M, Sun S, Xu G (2015) The characterization of six auxin-induced tomato GH3 genes uncovers a member, SlGH3.4, strongly responsive to arbuscular mycorrhizal symbiosis. Plant Cell Physiol 56:674–687

    Article  CAS  Google Scholar 

  • Lin Z, Arciga-Reyes L, Zhong S, Alexander L, Hackett R, Wilson I, Grierson D (2008a) SlTPR1, a tomato tetratricopeptide repeat protein, interacts with the ethylene receptors NR and LeETR1, modulating ethylene and auxin responses and development. J Exp Bot 59:4271–4287

    Article  CAS  Google Scholar 

  • Lin Z, Hong Y, Yin M, Li C, Zhang K, Grierson D (2008b) A tomato HD-Zip homeobox protein, LeHB-1, plays an important role in floral organogenesis and ripening. Plant J 55:301–310

    Article  CAS  Google Scholar 

  • Liu K, Kang BC, Jiang H, Moore SL, Li H, Watkins CB, Setter TL, Jahn MM (2005) A GH3-like gene, CcGH3, isolated from Capsicum chinense L. fruit is regulated by auxin and ethylene. Plant Mol Biol 58:447–464

    Article  CAS  Google Scholar 

  • Liu L, Jia C, Zhang M, Chen D, Chen S, Guo R, Guo D, Wang Q (2014) Ectopic expression of a BZR1-1D transcription factor in brassinosteroid signalling enhances carotenoid accumulation and fruit quality attributes in tomato. Plant Biotechnol J 12:105–115

    Article  CAS  Google Scholar 

  • Ludwig-Muller J (2008) Auxin conjugates: their role for plant development and in the evolution of land plants. J Exp Bot 62:1757–1773

    Article  Google Scholar 

  • Mellor N, Band LR, Pencik A, Novak O, Rashed A, Holman T, Wilson MH, Voss U, Bishopp A, King JR, Ljung K, Bennett MJ, Owen MR (2016) Dynamic regulation of auxin oxidase and conjugating enzymes AtDAO1 and GH3 modulates auxin homeostasis. Proc Natl Acad Sci USA 113:11022–11027

    Article  CAS  Google Scholar 

  • Peat TS, Bottcher C, Newman J, Lucent D, Cowieson N, Davies C (2012) Crystal structure of an indole-3-acetic acid amido synthetase from grapevine involved in auxin homeostasis. Plant Cell 24:4525–4538

    Article  CAS  Google Scholar 

  • Powell AL, Nguyen CV, Hill T, Cheng KL, Figueroa-Balderas R, Aktas H, Ashrafi H, Pons C, Fernandez-Munoz R, Vicente A, Lopez-Baltazar J, Barry CS, Liu Y, Chetelat R, Granell A, Van Deynze A, Giovannoni JJ, Bennett AB (2012) Uniform ripening encodes a Golden 2-like transcription factor regulating tomato fruit chloroplast development. Science 336:1711–1715

    Article  CAS  Google Scholar 

  • Rosati C, Aquilani R, Dharmapuri S, Pallara P, Marusic C, Tavazza R, Bouvier F, Camara B, Giuliano G (2000) Metabolic engineering of beta-carotene and lycopene content in tomato fruit. Plant J 24:413–419

    Article  CAS  Google Scholar 

  • Schaffer RJ, Ireland HS, Ross JJ, Ling TJ, David KM (2013) SEPALLATA1/2-suppressed mature apples have low ethylene, high auxin and reduced transcription of ripening-related genes. AoB Plants 5:pls047

    Article  Google Scholar 

  • Seymour GB, Ostergaard L, Chapman NH, Knapp S, Martin C (2013) Fruit development and ripening. Annu Rev Plant Biol 64:219–241

    Article  CAS  Google Scholar 

  • Sitbon F, Ostin A, Sundberg B, Olsson O, Sandberg G (1993) Conjugation of indole-3-acetic acid (IAA) in wild-type and IAA-overproducing transgenic tobacco plants, and identification of the main conjugates by frit-fast atom bombardment liquid chromatography-mass spectrometry. Plant Physiol 101:313–320

    Article  CAS  Google Scholar 

  • Staswick PE, Serban B, Rowe M, Tiryaki I, Maldonado MT, Maldonado MC, Suza W (2005) Characterization of an Arabidopsis enzyme family that conjugates amino acids to indole-3-acetic acid. Plant Cell 17:616–627

    Article  CAS  Google Scholar 

  • Su L, Diretto G, Purgatto E, Danoun S, Zouine M, Li Z, Roustan JP, Bouzayen M, Giuliano G, Chervin C (2015) Carotenoid accumulation during tomato fruit ripening is modulated by the auxin-ethylene balance. BMC Plant Biol 15:114

    Article  Google Scholar 

  • Sun L, Sun Y, Zhang M, Wang L, Ren J, Cui M, Wang Y, Ji K, Li P, Li Q, Chen P, Dai S, Duan C, Wu Y, Leng P (2012) Suppression of 9-cis-epoxycarotenoid dioxygenase, which encodes a key enzyme in abscisic acid biosynthesis, alters fruit texture in transgenic tomato. Plant Physiol 158:283–298

    Article  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  CAS  Google Scholar 

  • Terol J, Domingo C, Talon M (2006) The GH3 family in plants: genome wide analysis in rice and evolutionary history based on EST analysis. Gene 371:279–290

    Article  CAS  Google Scholar 

  • TGC (2012) The tomato genome sequence provides insights into fleshy fruit evolution. Nature 485:635–641

    Article  Google Scholar 

  • Vrebalov J, Pan IL, Arroyo AJ, McQuinn R, Chung M, Poole M, Rose J, Seymour G, Grandillo S, Giovannoni J, Irish VF (2009) Fleshy fruit expansion and ripening are regulated by the Tomato SHATTERPROOF gene TAGL1. Plant Cell 21:3041–3062

    Article  CAS  Google Scholar 

  • Wang S, Lu G, Hou Z, Luo Z, Wang T, Li H, Zhang J, Ye Z (2014) Members of the tomato FRUITFULL MADS-box family regulate style abscission and fruit ripening. J Exp Bot 65:3005–3014

    Article  CAS  Google Scholar 

  • Woodward AW, Bartel B (2005) Auxin: regulation, action, and interaction. Ann Bot 95:707–735

    Article  CAS  Google Scholar 

  • Zhong S, Fei Z, Chen YR, Zheng Y, Huang M, Vrebalov J, McQuinn R, Gapper N, Liu B, Xiang J, Shao Y, Giovannoni JJ (2013) Single-base resolution methylomes of tomato fruit development reveal epigenome modifications associated with ripening. Nat Biotechnol 31:154–159

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is financially supported by grants received from the Department of Science and Technology (DST), Government of India under DST INSPIRE-Faculty Award (Grant No. IFA12-LSPA-15) and UPE II-UGC and UGC-SAP FIST II support programs. The authors acknowledge DBT, New Delhi (BT/PR11671/PBD/16/828/2008) for a research grant to, Prof. Rameshwar Sharma and Y Sreelakshmi. The authors are grateful to Dr. Siddharth Satpathy, Department of English, University of Hyderabad for proofreading of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

RK conceived the experiments. TSK, AK, NN and RK performed the experiments and analyzed the data. RK wrote the manuscript.

Corresponding author

Correspondence to Rahul Kumar.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPTX 3440 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sravankumar, T., Akash, Naik, N. et al. A ripening-induced SlGH3-2 gene regulates fruit ripening via adjusting auxin-ethylene levels in tomato (Solanum lycopersicum L.). Plant Mol Biol 98, 455–469 (2018). https://doi.org/10.1007/s11103-018-0790-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-018-0790-1

Keywords

Navigation