Skip to main content
Log in

Specific region affects the difference in accumulation levels between apple food allergen Mal d 1 and birch pollen allergen Bet v 1 which are expressed in vegetative tissues of transgenic rice

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Key message

Specific domain of the Mal d 1 was identified to be mainly involved in higher accumulation level in vegetative tissues of transgenic rice than the Bet v 1.

Abstract

Apple food allergen Mal d 1 and birch pollen allergen Bet v 1 belong to the same pathogen related protein 10 (PR10) family. When green fluorescent protein (GFP) fused to either of these allergens was expressed as a secretory protein in transgenic rice by ligating an N terminal signal peptide and a C terminal KDEL ER retention signal under the control of the maize ubiquitin constitutive promoter, the GFP:Mald1 highly accumulated in various tissues, whereas accumulation level of the GFP:Betv1 was remarkably reduced in vegetative tissues except for seed. Analysis by RT-PCR exhibited that there was little difference in their transcript levels, indicating the involvement of post-transcriptional regulation. To investigate the cause of such difference in accumulation levels, deletion analysis of the Mal d 1 and domain swapping between them were carried out in transgenic rice. The results showed that the region between positions 41–90 in the Mal d 1 is predominantly implicated in higher level accumulation in vegetative tissues as well as seed as compared with the Bet v 1. The GFP:Mald1 was localized in oligomeric form within ER lumen or ER-derived particles in vegetative tissues, whereas in seed mainly deposited into novel huge ER-derived protein bodies with the size of 5–10 µm in aleurone cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

Cys:

Cysteine

BiP:

Binding protein

DTT:

Dithiothreitol

ER:

Endoplasmic reticulum

ELP:

Elastin-like polypeptide

GFP:

Green fluorescence protein

OAS:

Oral allergy syndrome

PB:

Protein body

2-MER:

2-Mercaptoethanol

SDS-PAGE:

Sodium dodecyl sulfate polyacrylamide gel electrophoresis

RT-PCR:

Reverse transcription-polymerase chain reactions

PR10:

Pathogen related protein 10

PDIL:

Protein disulfide isomerase like

References

  • Agarwall P, Agarwal PK (2014) Pathogenesis related-10 proteins are small, structurally similar but with diverse role in stress signaling. Mol Biol Rep 41:599–611

    Article  Google Scholar 

  • Ahammer L, Grutsch S, Kamenik AS, Liedl KR, Tollinger M (2017) Structure of the major apple allergen Mal d 1. J Agric Food Chem 65:1606–1612

    Article  CAS  Google Scholar 

  • Benchabane M, Goulet C, Rivard D, Faye L, Gomord V, Michaud D (2008) Preventing unintended proteolysis in plant protein biofactories. Plant Biotechnol J 6:633–648

    Article  CAS  Google Scholar 

  • Beuning L, Bowen J, Persson H, Barraclough D, Bulley S, Macrae E (2004) Characterisation of Mal d 1-related genes in Malus. Plant Mol Biol 55:369–388

    Article  CAS  Google Scholar 

  • Conley AJ, Joensuu JJ, Richman A, Menassa R (2011) Protein body-inducing fusions for high-level production and purification of recombinant proteins in plants. Plant Biotechnol J 9:419–433

    Article  CAS  Google Scholar 

  • Ebner C, Birkner T, Valenta R, Rumpold H, Breitenbach M, Scheiner O, Kraft D (1991) Common epitopes of birch pollen and apples—studies by western and northern blot. J Allergy Clin Immunol 88:588–594

    Article  CAS  Google Scholar 

  • Egelkrout E, Rajan V, Howard JA (2012) Overproduction of recombinant proteins in plants. Plant Sci 184:83–101

    Article  CAS  Google Scholar 

  • Fernandes H, Michalska K, Sikorski M, Jaskolski M (2013) Structural and functional aspects of PR-10 proteins. FEBS J 280:1169–1199

    Article  CAS  Google Scholar 

  • Fritsch R, Bohle B, Vollmann U, Wiedermann U, Jahn-Schmid B, Krebitz M, Breiteneder H, Kraft D, Ebner C (1998) Bet v 1, the major birch pollen allergen, and Mal d 1, the major apple allergen, cross-react at the level of allergen-specific T helper cells. J Allergy Clin Immunol 102:679–686

    Article  CAS  Google Scholar 

  • Geroldinger-Simic M, Zelniker T, Aberer W, Ebner C, Egger C, Greiderer A, Prem N, Lidholm J, Ballmer-Weber BK, Vieths S, Bohle B (2011) Birch pollen-related food allergy: clinical aspects and the role of allergen-specific IgE and IgG4 antibodies. J Allergy Clin Immunol 127:616–622

    Article  CAS  Google Scholar 

  • Goto F, Yoshihara T, Sugimoto N, Toki S, Takaiwa F (1999) Iron fortification of rice seed by the soybean ferritin gene. Nature Biotechnol 17:282–286

    Article  CAS  Google Scholar 

  • Gutiérrez SP, Saberianfar R, Kohalmi SE, Menassa R (2013) Protein body formation in stable transgenic tobacco expressing elastin-like polypeptide and hydrophobin fusion proteins. BMC Biotechnol 13:40

    Article  Google Scholar 

  • Hofbauer A, Stoger E (2013) Subcellular accumulation and modification of pharmaceutical proteins in different plant tissues. Curr Pharm Des 19:5495–5502

    Article  CAS  Google Scholar 

  • Holm J, Ferreras M, Ipsen H, Wurtzen PA, Gajhede M, Larsen JN, Lund K, Spangfort MD (2011) Epitope grafting, re-creating a conformational Bet v 1 antibody epitope on the surface of the homologous apple allergen Mal d 1. J Biol Chem 286:17569–17578

    Article  CAS  Google Scholar 

  • Kurokawa S, Kuroda M, Mejima M, Nakamura R, Takahashi Y, Sagara H, Takeyama N, Satoh S, Kiyono H, Teshima R, Masumura T, Yuki Y (2014) RNAi-mediated suppression of endogenous storage proteins leads to a change in localization of overexpressed cholera toxin B-subunit and the allergen protein RAG2 in rice seeds. Plant Cell Rep 33:75–87

    Article  CAS  Google Scholar 

  • Liu J, Ekramoddoullah AKM (2006) The family 10 of plant pathogenesis-related proteins: their structure, regulation, and function in response to biotic and abiotic stresses. Physiol Mol Plant Pathol 68:3–13

    Article  CAS  Google Scholar 

  • Ma Y, Gadermaier G, Bohle B, Bolhaar S, Knulst A, Markovic-Housley Z, Breiteneder H, Briza P, Hoffmann-Sommergruber K, Ferreira F (2006) Mutational analysis of amino acid positions crucial for IgE-binding epitopes of the major apple (Malus domestica) allergen, Mal d 1. Int Ach Allergy Immunol 139:53–62

    Article  CAS  Google Scholar 

  • Mari A, Ballmer-Weber BK, Vieths S (2005) The oral allergy syndrome: improved diagnostic and treatment methods. Curr Opin Allergy Clin Immunol 5:267–273

    Article  Google Scholar 

  • Marzban G, Puehringer H, Dey R, Brynda S, Ma Y, Martinelli A, Zaccarini M, van der Weg E, Housley Z, Kolarich D, Altmann F, Laimer M (2005) Localisation and distribution of the major allergens in apple fruits. Plant Sci 169:387–394.

    Article  CAS  Google Scholar 

  • Matthes A, Schmitz-Eiberger M (2009) Apple (Malus domestica L. Borkh.) allergen Mal d 1: effect of cultivar, cultivation system, and storage conditions. J Agric Food Chem 57:10548–10553

    Article  CAS  Google Scholar 

  • Mirza O, Henriksen A, Ipsen H, Larsen JN, Wissenbach M, Spangfort MD, Gajhede M (2000) Dominant epitopes and allergic cross-reactivity: complex formation between a Fab fragment of a monoclonal murine IgG antibody and the major allergen from birch pollen Bet v 1. J Immunol 165:331–338

    Article  CAS  Google Scholar 

  • Ogo Y, Takahashi H, Wang S, Takaiwa F (2014) Generation mechanism of novel, huge protein bodies containing wild type or hypoallergenic derivatives of birch pollen allergen Bet v 1 in rice endosperm. Plant Mol Biol 86:111–123

    Article  CAS  Google Scholar 

  • Oono Y, Wakasa Y, Hirose S, Yang L, Sakuta C, Takaiwa F (2010) Analysis of ER stress in developing rice endosperm accumulating β-amyoid peptide. Plant Biotechnol J 8:691–718

    Article  CAS  Google Scholar 

  • Pagliarani G, Paris R, Arens P, Tartarini S, Ricci G, Smulders MM, van de Weg WE (2013) A qRT-PCR assay for the expression of all Mal d 1 isoallergen genes. BMC Plant Biol 13:51

    Article  CAS  Google Scholar 

  • Puehringer H, Moll D, Hoffmann-Sommergruber K, Watillon B, Katinger H, Machado MLD (2000) The promoter of an apple Ypr10 gene, encoding the major allergen Mal d 1, is stress- and pathogen-inducible. Plant Sci 152:35–50

    Article  Google Scholar 

  • Qu LQ, Takaiwa F (2004) Evaluation of tissue specificity and expression strength of rice seed component gene promoters in transgenic rice. Plant Biotechnol J 2:113–125

    Article  CAS  Google Scholar 

  • Reyes FC, Chung T, Holding D, Jung R, Vierstra R, Otegui MS (2011) Delivery of prolamins to the protein storage vacuole in maize aleurone cells. Plant Cell 23:769–784

    Article  CAS  Google Scholar 

  • Roulias A, Pichler U, Hauser M, Himly M, Hofer H, Lackner P, Ebner C, Briza P, Bohle B, Egger M, Wallner M, Ferreira F (2014) Differences in the intrinsic immunogenicity and allergenicity of Bet v 1 and related food allergens revealed by site‐directed mutagenesis. Allergy 69:208–215

    Article  CAS  Google Scholar 

  • Rouvinen J, Jänis J, Laukkanen ML, Jylhä S, Niemi M, Päivinen T, Mäkinen-Kiljunen S, Haahtela T, Söderlund H, Takkinen K (2010) Transient dimers of allergens. PLoS ONE 5:e9037

    Article  Google Scholar 

  • Saberianfar R, Menassa R (2017) Protein bodies: how the ER deals with high accumulation of recombinant proteins. Plant Biotechnol J 15:671–673

    Article  Google Scholar 

  • Saberianfar R, Joensuu JJ, Conley AJ, Menassa R (2015) Protein body formation in leaves of Nicotiana benthamiana: a concentration-dependent mechanism influenced by the presence of fusion tags. Plant Biotechnol J 13:927–937

    Article  CAS  Google Scholar 

  • Saito Y, Kishida K, Takata K, Takahashi H, Shimada T, Tanaka K, Morita S, Satoh S, Masumura T (2009) A green fluorescent protein fused to rice prolamin forms protein body-like structures in transgenic rice. J Exp Bot 60:615–627

    Article  CAS  Google Scholar 

  • Saraste M, Sibbald PR, Wittinghofer A (1990) The P-loop—a common motif in ATP-and GTP-binding proteins. Trends Biochem Sci 15:430–434

    Article  Google Scholar 

  • Scholl I, Kalkura N, Shedziankova Y, Bergmann A, Verdino P, Knittelfelder R, Kopp T, Hantusch B, Betzel C, Dierks K, Scheiner O, Boltz-Nitulescu G, Keller W, Jensen-Jarolim E (2005) Dimerization of the major birch pollen allergen Bet v 1 is important for its in vivo IgE-cross-linking potential in mice. J Immunol 175:6645–6650

    Article  Google Scholar 

  • Shigemitsu T, Masumura T, Morita S, Satoh S (2013) Accumulation of rice prolamin-GFP fusion proteins induces ER-derived protein bodies in transgenic rice calli. Plant Cell Rep 32:389–399

    Article  CAS  Google Scholar 

  • Spangfort MD, Mirza O, Ipsen H, Van Neerven RJ, Gajhede M, Larsen JN (2003) Dominating IgE-binding epitope of Bet v 1, the major allergen of birch pollen, characterized by X-ray crystallography and site-directed mutagenesis. J Immunol 171:3084–3090

    Article  CAS  Google Scholar 

  • Stoger E, Ma JK, Fischer R, Christou P (2005) Sowing the seeds of success: pharmaceutical proteins from plants. Curr Opin Biotechnol 16:167–173

    Article  CAS  Google Scholar 

  • Tada Y, Utsumi S, Takaiwa F (2003) Foreign gene products can be enhanced by introduction into storage protein mutants. Plant Biotechnol J 1:411–422

    Article  CAS  Google Scholar 

  • Takaiwa F (2013) Update on the use of transgenic rice seeds in oral immunotherapy. Immunotherapy 5:301–312

    Article  CAS  Google Scholar 

  • Takaiwa F, Kikuchi S, Oono K (1987) A rice glutelin gene family-A major type of glutelin mRNAs can be divided into two classes. Mol Gen Genet 208:15–22

    Article  CAS  Google Scholar 

  • Takaiwa F, Takagi H, Hirose S, Wakasa Y (2007) Endosperm tissue is good production platform for artificial recombinant proteins in transgenic rice. Plant Biotechnol J 5:84–92

    Article  CAS  Google Scholar 

  • Takaiwa F, Hirose S, Takagi H, Yang L, Wakasa Y (2009) Deposition of a recombinant peptide in ER-derived protein bodies by retention with cysteine-rich prolamins in transgenic rice seed. Planta 229:1147–1158

    Article  CAS  Google Scholar 

  • Takaiwa F, Wakasa Y, Takagi H, Hiroi T (2015) Rice seed for delivery of vaccines to gut mucosal immune tissues. Plant Biotechnol J 13:1041–1055

    Article  CAS  Google Scholar 

  • Takaiwa F, Yang L, Maruyama N, Wakasa Y, Ozawa K (2016) Deposition mode of transforming growth factor-β expressed in transgenic rice seed. Plant Cell Rep 35:2461–2473

    Article  CAS  Google Scholar 

  • Takaiwa F, Wakasa Y, Hayashi S, Kawakatsu T (2017) An overview on the strategies to exploit rice endosperm as production platform for biopharmaceuticals. Plant Sci 263:201–209.

    Article  CAS  Google Scholar 

  • Wakasa Y, Yasuda H, Takaiwa F (2006) High accumulation of bioactive peptide in transgenic rice seeds by expression of introduced multiple genes. Plant Biotechnol J 4:499–510

    CAS  PubMed  Google Scholar 

  • Wakasa Y, Yasuda H, Oono Y, Kawakatsu T, Hirose S, Takahashi H, Hayashi S, Yang L, Takaiwa F (2011) Expression of ER quality control‐related genes in response to changes in BiP1 levels in developing rice endosperm. Plant J 65:675–689

    Article  CAS  Google Scholar 

  • Wakasa Y, Hayashi S, Takaiwa F (2012) Expression of OsBiP4 and OsBiP5 is highly correlated with the endoplasmic reticulum stress response in rice. Planta 236:1519–1527

    Article  CAS  Google Scholar 

  • Wallner M, Stöcklinger A, Thalhamer T, Bohle B, Vogel L, Briza P, Breiteneder H, Vieths S, Hartl A, Mari A, Ebner C, Lackner P, Hammerl P, Thalhamer J, Ferreira F (2007) Allergy multivaccines created by DNA shuffling of tree pollen allergens. J Allergy Clin Immunol 120:374–380

    Article  CAS  Google Scholar 

  • Wang S, Takahashi H, Kajiura H, Kawakatsu T, Fujiyama K, Takaiwa F (2013) Transgenic rice seeds accumulating recombinant hypoallergenic birch pollen allergen Bet v 1 generate giant protein bodies. Plant Cell Physiol 54:917–933

    Article  CAS  Google Scholar 

  • Yasuda H, Hayashi Y, Jomori T, Takaiwa F (2006) The correlation between expression and localization of a foreign gene product in rice endosperm. Plant Cell Physiol 47:756–763

    Article  CAS  Google Scholar 

  • Yasuda H, Hirose S, Kawakatsu T, Wakasa Y, Takiwa F (2009) Overexpression of BiP has inhibitory effects on the accumulation of seed storage proteins in endosperm cells of rice. Plant Cell Physiol 50:1532–1543

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Ms. K. Miyashita, Y. Ikemoto and H. Yajima for technical assistance and Dr. Kenjirou Ozawa for encourage of this research.

Author information

Authors and Affiliations

Authors

Contributions

FT carried out the experimental design, data analysis and wrote the manuscript. YO and YW participated in experiments and contributed the data analysis.

Corresponding author

Correspondence to Fumio Takaiwa.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1067 KB)

Supplementary material 2 (DOCX 34 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takaiwa, F., Ogo, Y. & Wakasa, Y. Specific region affects the difference in accumulation levels between apple food allergen Mal d 1 and birch pollen allergen Bet v 1 which are expressed in vegetative tissues of transgenic rice. Plant Mol Biol 98, 439–454 (2018). https://doi.org/10.1007/s11103-018-0789-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-018-0789-7

Keywords

Navigation