Advertisement

Plant Molecular Biology

, Volume 97, Issue 1–2, pp 103–112 | Cite as

Expression of VGRNb-PE immunotoxin in transplastomic lettuce (Lactuca sativa L.)

  • Malihe Mirzaee
  • Mokhtar Jalali-Javaran
  • Ahmad Moieni
  • Sirous Zeinali
  • Mahdi Behdani
Article

Abstract

Key message

This research has shown, for the first time, that plant chloroplasts are a suitable compartment for synthesizing recombinant immunotoxins and the transgenic immunotoxin efficiently causes the inhibition of VEGFR2 overexpression, cell growth and proliferation.

Abstract

Angiogenesis refers to the formation of new blood vessels, which resulted in the growth, invasion and metastasis of cancer. The vascular endothelial growth factor receptor 2 (VEGFR2) plays a major role in angiogenesis and blocking of its signaling inhibits neovascularization and tumor metastasis. Immunotoxins are promising therapeutics for targeted cancer therapy. They consist of an antibody linked to a protein toxin and are designed to specifically kill the tumor cells. In our previous study, VGRNb-PE immunotoxin protein containing anti-VEGFR2 nanobody fused to the truncated form of Pseudomonas exotoxin A has been established. Here, we expressed this immunotoxin in lettuce chloroplasts. Chloroplast genetic engineering offers several advantages, including high levels of transgene expression, multigene engineering in a single transformation event and maternal inheritance of the transgenes. Site specific integration of transgene into chloroplast genomes, and homoplasmy were confirmed. Immunotoxin levels reached up to 1.1% of total soluble protein or 33.7 µg per 100 mg of leaf tissue (fresh weight). We demonstrated that transgenic immunotoxin efficiently causes the inhibition of VEGFR2 overexpression, cell growth and proliferation. These results indicate that plant chloroplasts are a suitable compartment for synthesizing recombinant immunotoxins.

Keywords

Angiogenesis Immunotoxin Chloroplast transformation Lettuce 

Notes

Acknowledgements

The authors gratefully thank Dr. Babak Latif for creation of pBL102 vector, Dr. Mostafa Modarresi for assistance in creating pBL VGRNb-PE, Reza Moazzami for assistance with protein purification, and Ehsan Ali-Rahimi for help with the cell culture experiments.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Abdoli-Nasab M, Jalali-Javaran M, Cusidó RM, Palazón J, Baghizadeh A, Alizadeh H (2013) Expression of the truncated tissue plasminogen activator (K2S) gene in tobacco chloroplast. Mol Biol Rep 40:5749–5758.  https://doi.org/10.1007/s11033-013-2678-0 CrossRefPubMedGoogle Scholar
  2. Ahmadvand D, Rahbarizadeh F, Iri-Sofla FJ, Namazi G, Khaleghi S, Geramizadeh B, Pasalar P, Karimi H, Bakhtiari SHA (2010) Inhibition of angiogenesis by recombinant VEGF receptor fragments. Lab Med 41:417–422.  https://doi.org/10.1309/LMMH2WYRLP7B3HJN CrossRefGoogle Scholar
  3. Arlen PA, Falconer R, Cherukumilli S, Cole A, Cole AM, Oishi KK, Daniell H (2007) Field production and functional evaluation of chloroplast derived interferon-alpha2b. Plant Biotechnol J 5:511–525.  https://doi.org/10.1111/j.1467-7652.2007.00258.x CrossRefPubMedPubMedCentralGoogle Scholar
  4. Backer MV, Backer JM (2001) Targeting endothelial cells overexpressing VEGFR-2: selective toxicity of shiga-like toxin-VEGF fusion proteins. Bioconjug Chem 12:1066–1073.  https://doi.org/10.1021/bc015534j CrossRefPubMedGoogle Scholar
  5. Behdani M, Zeinali S, Karimpour M, Khanahmad H, Schoonooghe S, Aslemarz A, Seyed N, Moazami-Godarzi R, Baniahmad F, Habibi-Anbohi M, Hassanzadeh-Ghassabeh G, Muyldermans S (2013) Development of VEGFR2-specific nanobody Pseudomonas exotoxin A conjugated to provide efficient inhibition of tumor cell growth. New Biotechnol 30:205–209.  https://doi.org/10.1016/j.nbt.2012.09.002 CrossRefGoogle Scholar
  6. Bock R, Warzecha H (2010) Solar-powered factories for new vaccines and antibiotics. Trends Biotechnol 28:246–252.  https://doi.org/10.1016/j.tibtech.2010.01.006 CrossRefPubMedGoogle Scholar
  7. Boyhan D, Daniell H (2011) Low-cost production of proinsulin in tobacco and lettuce chloroplasts for injectable or oral delivery of functional insulin and C-peptide. Plant Biotechnol J 9:585–598.  https://doi.org/10.1111/j.1467-7652.2010.00582.x CrossRefPubMedGoogle Scholar
  8. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254.  https://doi.org/10.1016/0003-2697(76)90527-3 CrossRefPubMedGoogle Scholar
  9. Cardi T, Lenzi P, Maliga P (2010) Chloroplasts as expression platforms for plant-produced vaccines. Expert Rev Vaccines 9:893–911.  https://doi.org/10.1586/erv.10.78 CrossRefPubMedGoogle Scholar
  10. Chan HT, Daniell H (2015) Plant-made oral vaccines against human infectious diseases—Are we there yet? Plant Biotechnol J 13:1056–1070.  https://doi.org/10.1111/pbi.12471 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Chan HT, Xiao Y, Weldon WC, Oberste SM, Chumakov K, Daniell H (2016) Cold chain and virus-free chloroplast-made booster vaccine to confer immunity against different poliovirus serotypes. Plant Biotechnol J 14:2190–2200.  https://doi.org/10.1111/pbi.12575 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Chebolu S, Daniell H (2007) Stable expression of Gal/GalNAc lectin of Entamoeba histolytica in transgenic chloroplasts and immunogenicity in mice towards vaccine development for amoebiasis. Plant Biotechnol J 5:230–239.  https://doi.org/10.1111/j.1467-7652.2006.00234.x CrossRefPubMedPubMedCentralGoogle Scholar
  13. Daniell H (2006) Production of biopharmaceuticals and vaccines in plants via the chloroplast genome. Biotechnol J 1:1071–1079.  https://doi.org/10.1002/biot.200600145 CrossRefPubMedGoogle Scholar
  14. Daniell H, Lee SB, Panchal T, Wiebe PO (2001) Expression of the native cholera toxin B subunit gene and assembly as functional oligomers in transgenic tobacco chloroplasts. J Mol Biol 311:1001–1009.  https://doi.org/10.1006/jmbi.2001.4921 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Daniell H, Khan MS, Allison L (2002) Milestones in chloroplast genetic engineering: an environmentally friendly era in biotechnology. Trends Plant Sci 7:84–91.  https://doi.org/10.1016/s1360-1385(01)02193-8 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Daniell H, Ruiz G, Denes B, Sandberg L, Langridge W (2009) Optimization of codon composition and regulatory elements for expression of human insulin like growth factor-1 in transgenic chloroplasts and evaluation of structural identity and function. BMC Biotechnol 9:33.  https://doi.org/10.1186/1472-6750-9-33 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Davoodi-Semiromi A, Schreiber M, Nalapalli S, Verma D, Singh ND, Banks RK, Chakrabarti D, Daniell H (2010) Chloroplast-derived vaccine antigens confer dual immunity against cholera and malaria by oral or injectable delivery. Plant Biotechnol J 8:223–242.  https://doi.org/10.1111/j.1467-7652.2009.00479.x CrossRefPubMedGoogle Scholar
  18. Ding G, Chen X, Zhu J, Feng Z (2014) A murine-human chimeric IgG antibody against vascular endothelial growth factor receptor 2 inhibits angiogenesis in vitro. Cytotechnology 66:395–411.  https://doi.org/10.1007/s10616-013-9587-x CrossRefPubMedGoogle Scholar
  19. Doran PM (2000) Foreign protein production in plant tissue cultures. Curr Opin Biotechnol 11:199–204.  https://doi.org/10.1016/S0958-1669(00)00086-0 CrossRefPubMedGoogle Scholar
  20. Fernandez-San Millan A, Mingo-Castel A, Miller M, Daniell H (2003) A chloroplast transgenic approach to hyper-express and purify human serum albumin, a protein highly susceptible to proteolytic degradation. Plant Biotechnol J 1:71–79.  https://doi.org/10.1046/j.1467-7652.2003.00008.x CrossRefPubMedGoogle Scholar
  21. Fischer R, Stoger E, Schillberg S, Christou P, Twyman RM (2004) Plant-based production of biopharmaceuticals. Curr Opin Plant Biol 7:152–158.  https://doi.org/10.1016/j.pbi.2004.01.007 CrossRefPubMedGoogle Scholar
  22. Folkman J (1971) Tumor angiogenesis: therapeutic implications. N Engl J Med 285:1182–1186.  https://doi.org/10.1056/NEJM197111182852108 CrossRefPubMedGoogle Scholar
  23. Franklin S, Ngo B, Efuet E, Mayfield SP (2002) Development of a GFP reporter gene for Chlamydomonas reinhardtii chloroplast. Plant J 30:733–744.  https://doi.org/10.1046/j.1365313X.2002.01319.x CrossRefPubMedGoogle Scholar
  24. Gisby MF, Mellors P, Madesis P, Ellin M, Laverty H, O’Kane S, Ferguson MWJ, Day A (2011) A synthetic gene increases TGFb3 accumulation by 75-fold in tobacco chloroplasts enabling rapid purification and folding into a biologically active molecule. Plant Biotechnol J 9:618–628CrossRefPubMedGoogle Scholar
  25. Gray BN, Ahner BA, Hanson MR (2009) Extensive homologous recombination between introduced and native regulatory plastid DNA elements in transplastomic plants. Transgenic Res 18:559–572.  https://doi.org/10.1007/s11248-009-9246-3 CrossRefPubMedGoogle Scholar
  26. Hanson MR, Lin MT, Carmo-Silva AE, Parry MAJ (2016) Towards engineering carboxysomes into C3 plants. Plant J 87:38–50.  https://doi.org/10.1111/tpj.13139 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Harada H, Maoka T, Osawa A, Hattan JI, Kanamoto H, Shindo K, Otomatsu T, Misawa N (2014) Construction of transplastomic lettuce (Lactuca sativa) dominantly producing astaxanthin fatty acid esters and detailed chemical analysis of generated carotenoids. Transgenic Res 2:11–23.  https://doi.org/10.1007/s11248-013-9750-3 Google Scholar
  28. Holliger P, Hudson PJ (2005) Engineered antibody fragments and the rise of single domains. Nat Biotechnol 23:1126–1136.  https://doi.org/10.1038/nbt1142 CrossRefPubMedGoogle Scholar
  29. Horn ME, Woodard SL, Howard JA (2004) Plant molecular farming: systems and products. Plant Cell Rep 22:711–720.  https://doi.org/10.1007/s00299-004-0767-1 CrossRefPubMedGoogle Scholar
  30. Ichikawa Y, Tamoi M, Sakuyama H, Maruta T, Ashida H, Yokota A, Shigeoka S (2010) Generation of transplastomic lettuce with enhanced growth and high yield. GM Crops 1:322–326.  https://doi.org/10.4161/gmcr.1.5.14706 CrossRefPubMedGoogle Scholar
  31. Jain M, Kamal N, Batra SK (2007) Engineering antibodies for clinical applications. Trends Biotechnol 25:307–316.  https://doi.org/10.1016/j.tibtech.2007.05.001 CrossRefPubMedGoogle Scholar
  32. Jin S, Daniell H (2015) The engineered chloroplast genome just got smarter. Trends Plant Sci 20:622–640.  https://doi.org/10.1016/j.tplants.2015.07.004 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Kanamoto H, Yamashita A, Asao H, Okumura S, Takase H, Hattori M, Yokota A, Tomizawa KI (2006) Efficient and stable transformation of Lactuca sativa L. cv. Cisco (lettuce) plastids. Transgenic Res 15:205–2017.  https://doi.org/10.1007/s11248-005-3997-2 CrossRefPubMedGoogle Scholar
  34. Kazemi-Lomedasht F, Behdani M, Bagheri KP, Habibi-Anbouhi M, Abolhassani M, Arezumand R, Shahbazzadeh D, Mirzahoseini H (2015) Inhibition of angiogenesis in human endothelial cell using VEGF specific nanobody. Mol Immunol 65:58–67.  https://doi.org/10.1016/j.molimm.2015.01.010 CrossRefPubMedGoogle Scholar
  35. Kumar S, Dhingra A, Daniell H (2004) Stable transformation of the cotton plastid genome and maternal inheritance of transgenes. Plant Mol Biol 56:203–2016.  https://doi.org/10.1007/s11103-004-2907-y CrossRefPubMedPubMedCentralGoogle Scholar
  36. Kuroda H, Maliga P (2001) Sequences downstream of the translation initiation codon are important determinants of translation efficiency in chloroplasts. Plant Physiol 125:430–436CrossRefPubMedPubMedCentralGoogle Scholar
  37. Lai H, He J, Engle M, Diamond MS, Chen Q (2012) Robust production of virus-like particles and monoclonal antibodies with geminiviral replicon vectors in lettuce. Plant Biotechnol J 10:95–104.  https://doi.org/10.1111/j.1467-7652.2011.00649.x CrossRefPubMedGoogle Scholar
  38. Leelavathi S, Reddy VS (2003) Chloroplast expression of His-tagged GUS-fusions: a general strategy to overproduce and purify foreign proteins using transplastomic plants as bioreactors. Mol Breeding 11:49–58.  https://doi.org/10.1023/A:1022114427971 CrossRefGoogle Scholar
  39. Lelivelt CL, McCabe MS, Newell CA, Desnoo CB, van Dun KM, Birch-Machin I, Gray JC, Mills KH, Nugent JM (2005) Stable plastid transformation in lettuce (Lactuca sativa L.). Plant Mol Biol 58:763–774.  https://doi.org/10.1007/s11103-005-7704-8 CrossRefPubMedGoogle Scholar
  40. Lim S, Ashida H, Watanabe R, Inai K, Kim YS, Mukougawa K, Fukuda H, Tomizawa K, Ushiyama K, Asaon H, Tamoi M, Masutani H, Shigeoka S, Yodoi J, Yokota A (2011) Production of biologically active human thioredoxin 1 protein in lettuce chloroplasts. Plant Mol Biol 76:335–344.  https://doi.org/10.1007/s11103-011-9745-5 CrossRefPubMedGoogle Scholar
  41. Lutz KA, Azhagiri AK, Tungsuchat-Huang T, Maliga P (2007) A guide to choosing vectors for transformation of the plastid genome of higher plants. Plant Physiol 145:1201–1210.  https://doi.org/10.1104/pp.107.106963 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Maliga P, Bock R (2011) Plastid biotechnology: food, fuel, and medicine for the 21st century. Plant Physiol 155:1501–1510.  https://doi.org/10.1104/pp.110.170969 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63.  https://doi.org/10.1016/0022-1759(83)90303-4 CrossRefPubMedGoogle Scholar
  44. Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497.  https://doi.org/10.1111/j.1399-3054.1962.tb08052.x CrossRefGoogle Scholar
  45. Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8:4321–4326.  https://doi.org/10.1093/nar/8.19.4321 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Muyldermans S (2001) Single domain camel antibodies: current status. Rev Mol Biotechnol 74:277–302.  https://doi.org/10.1016/S1389-0352(01)00021-6 CrossRefGoogle Scholar
  47. Obembe OO, Popoola JO, Leelavathi S, Reddy SV (2011) Advances in plant molecular farming. Biotechnol Adv 29:210–222.  https://doi.org/10.1016/j.biotechadv.2010.11.004 CrossRefPubMedGoogle Scholar
  48. Oey M, Lohse M, Kreikemeyer B, Bock R (2009) Exhaustion of the chloroplast protein synthesis capacity by massive expression of a highly stable protein antibiotic. Plant J 57:436–445.  https://doi.org/10.1111/j.1365-313X.2008.03702.x CrossRefPubMedGoogle Scholar
  49. Oliveira S, Heukers R, Sornkom J, Kok RJ, van Bergen En Henegouwen PMP (2013) Targeting tumors with nanobodies for cancer imaging and therapy. J Control Release 172:607–617.  https://doi.org/10.1016/j.jconrel.2013.08.298 CrossRefPubMedGoogle Scholar
  50. Rasala BA, Mayfield SP (2015) Photosynthetic biomanufacturing in green algae; production of recombinant proteins for industrial, nutritional, and medical uses. Photosynth Res 123:227–239.  https://doi.org/10.1007/s11120-014-9994-7 CrossRefPubMedGoogle Scholar
  51. Risberg K, Fodstad Ø, Andersson Y (2011) Synergistic anticancer effects of the 9.2.27PE immunotoxin and ABT-737 in melanoma. PLoS ONE 6:e24012.  https://doi.org/10.1371/journal.pone.0024012 CrossRefPubMedPubMedCentralGoogle Scholar
  52. Ruhlman T, Ahangari R, Devine A, Samsam M, Daniell H (2007) Expression of cholera toxin B-proinsulin fusion protein in lettuce and tobacco chloroplasts—oral administration protects against development of insulitis in non-obese diabetic mice. Plant Biotechnol J 5:495–510.  https://doi.org/10.1111/j.1467-7652.2007.00259.x CrossRefPubMedPubMedCentralGoogle Scholar
  53. Ruhlman T, Verma D, Samson N, Daniell H (2010) The role of heterologous chloroplast sequence elements in transgene integration and expression. Plant Physiol 152:2088–2104.  https://doi.org/10.1104/pp.109.152017 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Salvatore G, Beers R, Margulies I, Kreitman RJ, Pastan I (2002) Improved cytotoxic activity toward cell lines and fresh leukemia cells of a mutant anti-CD22 immunotoxin obtained by antibody phage display. Clin Cancer Res 8:995–1002PubMedGoogle Scholar
  55. Sambrook J, Russell DR (2001) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring HarborGoogle Scholar
  56. Schillberg S, Twyman RM, Fischer R (2005) Opportunities for recombinant antigen and antibody expression in transgenic plants-technology assessment. Vaccine 23:1764–1769.  https://doi.org/10.1016/j.vaccine.2004.11.002 CrossRefPubMedGoogle Scholar
  57. Shimada H, Sugiura M (1991) Fine structural features of the chloroplast genome: comparison of the sequenced chloroplast genomes. Nucleic Acids Res 19:983–995.  https://doi.org/10.1093/nar/19.5.983 CrossRefPubMedPubMedCentralGoogle Scholar
  58. Staub JM, Garcia B, Graves J, Hajdukiewicz PT, Hunter P, Nehra N, Paradkar V, Schlittler M, Carroll JA, Spatola L, Ward D, Ye G, Russell DA (2000) High-yield production of a human therapeutic protein in tobacco chloroplasts. Nat Biotechnol 18:333–338.  https://doi.org/10.1038/73796 CrossRefPubMedGoogle Scholar
  59. Svab Z, Maliga P (1993) High-frequency plastid transformation in tobacco by selection for a chimeric aadA gene. Proc Natl Acad Sci USA 90:913–917.  https://doi.org/10.1073/pnas.90.3.913 CrossRefPubMedPubMedCentralGoogle Scholar
  60. Tran M, Henry RE, Siefker D, Van C, Newkirk G, Kim J, Bui J, Mayfield SP (2013a) Production of anti-cancer immunotoxins in algae: ribosome inactivating proteins as fusion partners. Biotechnol Bioeng 110:2826–2835.  https://doi.org/10.1002/bit.24966 CrossRefPubMedGoogle Scholar
  61. Tran M, Van C, Barrera DJ, Pettersson PL, Peinado CD, Bui J, Mayfield SP (2013b) Production of unique immunotoxin cancer therapeutics in algal chloroplasts. Proc Natl Acad Sci USA 110:E15–E22.  https://doi.org/10.1073/pnas.1214638110 CrossRefPubMedGoogle Scholar
  62. Verma D, Daniell H (2007) Chloroplast vector systems for biotechnology applications. Plant Physiol 145:1129–1143.  https://doi.org/10.1104/pp.107.106690 CrossRefPubMedPubMedCentralGoogle Scholar
  63. Verma D, Moghimi B, LoDuca PA, Singh HD, Hoffman BE, Herzog RW, Daniell H (2010) Oral delivery of bioencapsulated coagulation factor IX prevents inhibitor formation and fatal anaphylaxis in hemophilia B mice. Proc Natl Acad Sci USA 107:7101–7106.  https://doi.org/10.1073/pnas.0912181107 CrossRefPubMedPubMedCentralGoogle Scholar
  64. Wang YP, Wei ZY, Zhong XF, Lin CJ, Cai YH, Ma J, Zhang YY, Liu YZ, Xing SC (2015) Stable expression of basic fibroblast growth factor in chloroplasts of tobacco. Int J Mol Sci 17:E19.  https://doi.org/10.3390/ijms17010019 CrossRefPubMedGoogle Scholar
  65. Wicke S, Schneeweiss GM, dePamphilis CW, Muller KF, Quandt D (2011) The evolution of the plastid chromosome in land plants: gene content, gene order, gene function. Plant Mol Biol 76:273–297.  https://doi.org/10.1007/s11103-011-9762-4 CrossRefPubMedPubMedCentralGoogle Scholar
  66. Yang H, Gray BN, Ahner BA, Hanson MR (2013) Bacteriophage 5′ untranslated regions for control of plastid transgene expression. Planta 237:517–527.  https://doi.org/10.1007/s00425-012-1770-3 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Malihe Mirzaee
    • 1
  • Mokhtar Jalali-Javaran
    • 1
  • Ahmad Moieni
    • 1
  • Sirous Zeinali
    • 2
  • Mahdi Behdani
    • 3
  1. 1.Department of Plant Breeding & Biotechnology, Faculty of AgricultureTarbiat Modares UniversityTehranIran
  2. 2.Department of Molecular MedicinePasteur Institute of IranTehranIran
  3. 3.Biotechnology Research Center, Biotechnology Department, Venom & Biotherapeutics Molecules Lab.Pasteur Institute of IranTehranIran

Personalised recommendations