Plant Molecular Biology

, Volume 97, Issue 1–2, pp 37–55 | Cite as

A tandem array of UDP-glycosyltransferases from the UGT73C subfamily glycosylate sapogenins, forming a spectrum of mono- and bisdesmosidic saponins

  • Pernille Østerbye Erthmann
  • Niels Agerbirk
  • Søren Bak


Key message

This study identifies six UGT73Cs all able to glucosylate sapogenins at positions 3 and/or 28 which demonstrates that B. vulgaris has a much richer arsenal of UGTs involved in saponin biosynthesis than initially anticipated.


The wild cruciferous plant Barbarea vulgaris is resistant to some insects due to accumulation of two monodesmosidic triterpenoid saponins, oleanolic acid 3-O-β-cellobioside and hederagenin 3-O-β-cellobioside. Insect resistance depends on the structure of the sapogenin aglycone and the glycosylation pattern. The B. vulgaris saponin profile is complex with at least 49 saponin-like metabolites, derived from eight sapogenins and including up to five monosaccharide units. Two B. vulgaris UDP-glycosyltransferases, UGT73C11 and UGT73C13, O-glucosylate sapogenins at positions 3 and 28, forming mainly 3-O-β-d-glucosides. The aim of this study was to identify UGTs responsible for the diverse saponin oligoglycoside moieties observed in B. vulgaris. Twenty UGT genes from the insect resistant genotype were selected and heterologously expressed in Nicotiana benthamiana and/or Escherichia coli. The extracts were screened for their ability to glycosylate sapogenins (oleanolic acid, hederagenin), the hormone 24-epibrassinolide and sapogenin monoglucosides (hederagenin and oleanolic acid 3-O-β-d-glucosides). Six UGTs from the UGT73C subfamily were able to glucosylate both sapogenins and both monoglucosides at positions 3 and/or 28. Some UGTs formed bisdesmosidic saponins efficiently. At least four UGT73C genes were localized in a tandem array with UGT73C11 and possibly UGT73C13. This organization most likely reflects duplication events followed by sub- and neofunctionalization. Indeed, signs of positive selection on several amino acid sites were identified and modelled to be localized on the UGT protein surface. This tandem array is proposed to initiate higher order bisdesmosidic glycosylation of B. vulgaris saponins, leading to the recently discovered saponin structural diversity, however, not directly to known cellobiosidic saponins.


UDP-glucosyltransferases Bisdesmosidic triterpenoid saponins Tandem repeat Barbarea vulgaris Evolution of plant chemical defense compounds 



We thank Dr. Francisco R. Badenes-Pérez for the generous gift of hederagenin 3-O-β-cellobioside, Dr. Carl Erik Olsen for NMR-spectroscopy of this saponin, Dr. Elizabeth Heather Jakobsen Neilson for assistance in LC-MS analysis, Dr. Mika Zagrobelny for assistance in phylogenetic analysis and analysis for positive selection, Dr. Qing Liu for discussions and sharing a standard, Dr. Bekzod Khakimov for discussions and sharing a protocol for alkaline hydrolysis, Mette Sørensen for thorough reading and constructive ideas during writing, Michael Court and the UGT nomenclature committee for systematic UGT names, and three anonymous reviewers for constructive comments and suggestions. This work was funded by the Danish Council for Independent Research, Technology and Production Sciences (Grant No. 1335-00151) and Department of Plant and Environmental Sciences, University of Copenhagen (PhD stipend to PØE).

Author contributions

Conceived research: PØE, SB. Planned experiments: All. Carried out research and analyzed data: PØE supervised by NA and SB. Wrote draft: PØE. Wrote paper: All.

Supplementary material

11103_2018_723_MOESM1_ESM.pdf (4.8 mb)
Supplementary material 1 (PDF 4900 KB)


  1. Agerbirk N, Olsen CE (2011) Isoferuloyl derivatives of five seed glucosinolates in the crucifer genus. Barbarea Phytochem 72:610–623CrossRefGoogle Scholar
  2. Agerbirk N, Olsen CE, Nielsen JK (2001) Seasonal variation in leaf glucosinolates and insect resistance in two types of Barbarea vulgaris ssp. arcuata. Phytochemistry 58:91–100CrossRefPubMedGoogle Scholar
  3. Agerbirk N, Olsen CE, Bibby BM, Frandsen HO, Brown LD, Nielsen JK, Renwick JAA (2003a) A saponin correlated with variable resistance of Barbarea vulgaris to the diamondback moth Plutella xylostella. J Chem Ecol 29:1417–1433CrossRefPubMedGoogle Scholar
  4. Agerbirk N, Ørgaard M, Nielsen JK (2003b) Glucosinolates, flea beetle resistance, and leaf pubescence as taxonomic characters in the genus Barbarea (Brassicaceae). Phytochemistry 63:69–80CrossRefPubMedGoogle Scholar
  5. Agerbirk N, Olsen CE, Heimes C, Christensen S, Bak S, Hauser TP (2015) Multiple hydroxyphenethyl glucosinolate isomers and their tandem mass spectrometric distinction in a geographically structured polymorphism in the crucifer Barbarea vulgaris. Phytochemistry 115:130–142CrossRefPubMedGoogle Scholar
  6. Augustin JM, Kuzina V, Andersen SB, Bak S (2011) Molecular activities, biosynthesis and evolution of triterpenoid saponins. Phytochemistry 72:435–457CrossRefPubMedGoogle Scholar
  7. Augustin JM, Drok S, Shinoda T, Sanmiya K, Nielsen JK, Khakimov B, Olsen CE, Hansen EH, Kuzina V, Ekstrøm CT, Hauser TP, Bak S (2012) UDP-glycosyltransferases from the UGT73C subfamily in Barbarea vulgaris catalyze sapogenin 3-O-glucosylation in saponin-mediated insect resistance. Plant Physiol 160:1881–1895CrossRefPubMedPubMedCentralGoogle Scholar
  8. Badenes-Perez FR, Reichelt M, Heckel DG (2010) Can sulfur fertilisation improve the effectiveness of trap crops for diamondback moth, Plutella xylostella (L.)(Lepidoptera: Plutellidae)? Pest Manag Sci 66:832–838PubMedGoogle Scholar
  9. Badenes-Perez FR, Reichelt M, Gershenzon J, Heckel DG (2014) Using plant chemistry and insect preference to study the potential of Barbarea (Brassicaceae) as a dead-end trap crop for diamondback moth (Lepidoptera: Plutellidae). Phytochemistry 98:137–144CrossRefPubMedGoogle Scholar
  10. Bienert S, Waterhouse A, de Beer TA, Tauriello G, Studer G, Bordoli L, Schwede T (2017) The SWISS-MODEL Repository—new features and functionality. Nucleic Acids Res 45:D313-D319CrossRefPubMedGoogle Scholar
  11. Byrne SL, Erthmann P, Agerbirk N, Bak S, Hauser TP, Nagy I, Paina C, Asp T (2017) The genome sequence of Barbarea vulgaris facilitates the study of ecological biochemistry. Sci Rep 7:p 40728CrossRefPubMedPubMedCentralGoogle Scholar
  12. Carelli M, Biazzi E, Panara F, Tava A, Scaramelli L, Porceddu A, Graham N, Odoardi M, Piano E, Arcioni S (2011) Medicago truncatula CYP716A12 is a multifunctional oxidase involved in the biosynthesis of hemolytic saponins. Plant Cell 23:3070–3081CrossRefPubMedPubMedCentralGoogle Scholar
  13. Christensen S, Heimes C, Agerbirk N, Kuzina V, Olsen CE, Hauser TP (2014) Different geographical distributions of two chemotypes of Barbarea vulgaris that differ in resistance to insects and a pathogen. J Chem Ecol 40:491–501CrossRefPubMedGoogle Scholar
  14. Chung Y, Choe S (2013) The regulation of brassinosteroid biosynthesis in Arabidopsis. Crit Rev Plant Sci 32:396–410CrossRefGoogle Scholar
  15. Dalby-Brown L, Olsen CE, Nielsen JK, Agerbirk N (2011) Polymorphism for novel tetraglycosylated flavonols in an eco-model crucifer Barbarea vulgaris. J Agric Food Chem 59:6947–6956CrossRefPubMedGoogle Scholar
  16. De Geyter E, Swevers L, Soin T, Geelen D, Smagghe G (2012) Saponins do not affect the ecdysteroid receptor complex but cause membrane permeation in insect culture cell lines. J Insect Physiol 58:18–23CrossRefPubMedGoogle Scholar
  17. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797CrossRefPubMedPubMedCentralGoogle Scholar
  18. Geisler K, Hughes RK, Sainsbury F, Lomonossoff GP, Rejzek M, Fairhurst S, Olsen C-E, Motawia MS, Melton RE, Hemmings AM (2013) Biochemical analysis of a multifunctional cytochrome P450 (CYP51) enzyme required for synthesis of antimicrobial triterpenes in plants. Proc Natl Acad Sci 110:E3360–E3367CrossRefPubMedPubMedCentralGoogle Scholar
  19. Hall BG (2004) Phylogenetic trees made easy: a how-to manual, vol 547. Sinauer Associates Sunderland, SunderlandGoogle Scholar
  20. Hamberger B, Bak S (2013) Plant P450s as versatile drivers for evolution of species-specific chemical diversity. Philos Trans R Soc B 368:20120426CrossRefGoogle Scholar
  21. Heimes C, Agerbirk N, Sørensen H, van Mölken T, Hauser TP (2016) Ecotypic differentiation of two sympatric chemotypes of Barbarea vulgaris (Brassicaceae) with different biotic resistances. Plant Ecol 217:1055–1068CrossRefGoogle Scholar
  22. Husar S, Berthiller F, Fujioka S, Rozhon W, Khan M, Kalaivanan F, Elias L, Higgins GS, Li Y, Schuhmacher R (2011) Overexpression of the UGT73C6 alters brassinosteroid glucoside formation in Arabidopsis thaliana. BMC Plant Biol 11:1CrossRefGoogle Scholar
  23. Jung S-C, Kim W, Park SC, Jeong J, Park MK, Lim S, Lee Y, Im W-T, Lee JH, Choi G (2014) Two ginseng UDP-glycosyltransferases synthesize ginsenoside Rg3 and Rd. Plant Cell Physiol 55:2177–2188CrossRefPubMedGoogle Scholar
  24. Khakimov B, Kuzina V, Erthmann P, Fukushima EO, Augustin JM, Olsen CE, Scholtalbers J, Volpin H, Andersen SB, Hauser TP, Muranaka T, Bak S (2015) Identification and genome organization of saponin pathway genes from a wild crucifer, and their use for transient production of saponins in Nicotiana benthamiana. Plant J 84:478–490CrossRefPubMedGoogle Scholar
  25. Khakimov B, Tseng LH, Godejohann M, Bak S, Engelsen SB (2016) Screening for triterpenoid saponins in plants using hyphenated analytical platforms. Molecules 21:1614CrossRefGoogle Scholar
  26. Kunii M, Kitahama Y, Fukushima EO, Seki H, Muranaka T, Yoshida Y, Aoyama Y (2012) β-Amyrin oxidation by oat CYP51H10 expressed heterologously in yeast cells: the first example of CYP51-dependent metabolism other than the 14-demethylation of sterol precursors. Biol Pharma Bull 35:801–804CrossRefGoogle Scholar
  27. Kuzina V, Ekstrom CT, Andersen SB, Nielsen JK, Olsen CE, Bak S (2009) Identification of defense compounds in Barbarea vulgaris against the herbivore Phyllotreta nemorum by an Ecometabolomic approach. Plant Physiol 151:1977–1990CrossRefPubMedPubMedCentralGoogle Scholar
  28. Kuzina V, Nielsen JK, Augustin JM, Torp AM, Bak S, Andersen SB (2011) Barbarea vulgaris linkage map and quantitative trait loci for saponins, glucosinolates, hairiness and resistance to the herbivore Phyllotreta nemorum. Phytochemistry 72:188–198CrossRefPubMedGoogle Scholar
  29. Li J, Liu S, Wang J, Li J, Liu D, Li J, Gao W (2016) Fungal elicitors enhance ginsenosides biosynthesis, expression of functional genes as well as signal molecules accumulation in adventitious roots of Panax ginseng CA Mey. J Biotechnol 239:106–114CrossRefPubMedGoogle Scholar
  30. Liu T, Zhang X, Yang H, Agerbirk N, Qiu Y, Wang H, Shen D, Song J, Li X (2016) Aromatic glucosinolate biosynthesis pathway in Barbarea vulgaris and its response to Plutella xylostella infestation. Front Plant Sci 7:83PubMedPubMedCentralGoogle Scholar
  31. Lou X-M, Yao Q-H, Zhang Z, Peng R-H, Xiong A-S, Wang H-K (2007) Expression of the human hepatitis B virus large surface antigen gene in transgenic tomato plants. Clin Vaccine Immunol 14:464–469CrossRefPubMedPubMedCentralGoogle Scholar
  32. Mackenzie PI, Bock KW, Burchell B, Guillemette C, Ikushiro S-i, Iyanagi T, Miners JO, Owens IS, Nebert DW (2005) Nomenclature update for the mammalian UDP glycosyltransferase (UGT) gene superfamily. Pharmacogenet Genomics 15:677–685CrossRefPubMedGoogle Scholar
  33. McWilliam H, Li W, Uludag M, Squizzato S, Park YM, Buso N, Cowley AP, Lopez R (2013) Analysis tool web services from the EMBL-EBI. Nucleic Acids Res 41:W597-W600CrossRefPubMedCentralGoogle Scholar
  34. Meesapyodsuk D, Balsevich J, Reed DW, Covello PS (2007) Saponin biosynthesis in Saponaria vaccaria. cDNAs encoding β-amyrin synthase and a triterpene carboxylic acid glucosyltransferase. Plant Physiol 143:959–969CrossRefPubMedPubMedCentralGoogle Scholar
  35. Meßner B, Thulke O, Schäffner AR (2003) Arabidopsis glucosyltransferases with activities toward both endogenous and xenobiotic substrates. Planta 217:138–146PubMedGoogle Scholar
  36. Modolo LV, Li L, Pan H, Blount JW, Dixon RA, Wang X (2009) Crystal structures of glycosyltransferase UGT78G1 reveal the molecular basis for glycosylation and deglycosylation of (iso) flavonoids. J Mol Biol 392:1292–1302CrossRefPubMedGoogle Scholar
  37. Moses T, Papadopoulou KK, Osbourn A (2014) Metabolic and functional diversity of saponins, biosynthetic intermediates and semi-synthetic derivatives. Crit Rev Biochem Mol Biol 49:439–462CrossRefPubMedPubMedCentralGoogle Scholar
  38. Naoumkina MA, Modolo LV, Huhman DV, Urbanczyk-Wochniak E, Tang Y, Sumner LW, Dixon RA (2010) Genomic and coexpression analyses predict multiple genes involved in triterpene saponin biosynthesis in Medicago truncatula. Plant Cell 22:850–866CrossRefPubMedPubMedCentralGoogle Scholar
  39. Nielsen JK, Nagao T, Okabe H, Shinoda T (2010a) Resistance in the plant, Barbarea vulgaris, and counter-adaptations in flea beetles mediated by saponins. J Chem Ecol 36:277–285CrossRefPubMedGoogle Scholar
  40. Nielsen NJ, Nielsen J, Staerk D (2010b) New resistance-correlated saponins from the insect-resistant crucifer Barbarea vulgaris. J Agric Food Chem 58:5509–5514CrossRefPubMedGoogle Scholar
  41. Nørholm MH (2010) A mutant Pfu DNA polymerase designed for advanced uracil-excision DNA engineering. BMC Biotechnol 10:1CrossRefGoogle Scholar
  42. Ober D (2010) Gene duplications and the time thereafter–examples from plant secondary metabolism. Plant Biol (Stuttg) 12:570–577Google Scholar
  43. Osbourn A (1996) Saponins and plant defence—a soap story. Trends Plant Sci 1:4–9CrossRefGoogle Scholar
  44. Osbourn AE (2003) Saponins in cereals. Phytochemistry 62:1–4CrossRefPubMedGoogle Scholar
  45. Owatworakit A, Townsend B, Louveau T, Jenner H, Rejzek M, Hughes RK, Saalbach G, Qi X, Bakht S, Roy AD (2013) Glycosyltransferases from oat (Avena) implicated in the acylation of avenacins. J Biol Chem 288:3696–3704CrossRefPubMedGoogle Scholar
  46. Poppenberger B, Fujioka S, Soeno K, George GL, Vaistij FE, Hiranuma S, Seto H, Takatsuto S, Adam G, Yoshida S (2005) The UGT73C5 of Arabidopsis thaliana glucosylates brassinosteroids. Proc Natl Acad Sci USA 102:15253–15258CrossRefPubMedPubMedCentralGoogle Scholar
  47. Sainsbury F, Thuenemann EC, Lomonossoff GP (2009) pEAQ: versatile expression vectors for easy and quick transient expression of heterologous proteins in plants. Plant Biotechnol J 7:682–693CrossRefPubMedGoogle Scholar
  48. Schrödinger (LLC) The PyMOL Molecular Graphics System version 1.3.
  49. Seki H, Ohyama K, Sawai S, Mizutani M, Ohnishi T, Sudo H, Akashi T, Aoki T, Saito K, Muranaka T (2008) Licorice β-amyrin 11-oxidase, a cytochrome P450 with a key role in the biosynthesis of the triterpene sweetener glycyrrhizin. Proceed Natl Acad Sci 105:14204–14209CrossRefGoogle Scholar
  50. Seki H, Tamura K, Muranaka T (2015) P450s and UGTs: key players in the structural diversity of triterpenoid saponins. Plant Cell Physiol 56:1463–1471CrossRefPubMedGoogle Scholar
  51. Shibuya M, Nishimura K, Yasuyama N, Ebizuka Y (2010) Identification and characterization of glycosyltransferases involved in the biosynthesis of soyasaponin I in Glycine max. FEBS Lett 584:2258–2264CrossRefPubMedGoogle Scholar
  52. Shinoda T, Nagao T, Nakayama M, Serizawa H, Koshioka M, Okabe H, Kawai A (2002) Identification of a triterpenoid saponin from a crucifer, Barbarea vulgaris, as a feeding deterrent to the diamondback moth, Plutella xylostella. J Chem Ecol 28:587–599CrossRefPubMedGoogle Scholar
  53. Takos AM, Knudsen C, Lai D, Kannangara R, Mikkelsen L, Motawia MS, Olsen CE, Sato S, Tabata S, Jørgensen K (2011) Genomic clustering of cyanogenic glucoside biosynthetic genes aids their identification in Lotus japonicus and suggests the repeated evolution of this chemical defence pathway. Plant J 68:273–286CrossRefPubMedGoogle Scholar
  54. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729CrossRefPubMedPubMedCentralGoogle Scholar
  55. Thimmappa R, Geisler K, Louveau T, O’Maille P, Osbourn A (2014) Triterpene biosynthesis in plants. Annu Rev Plant Biol 65:225–257CrossRefPubMedGoogle Scholar
  56. van Mölken T, Heimes C, Hauser TP, Sundelin T (2014) Phylogeny of an Albugo sp. infecting Barbarea vulgaris in Denmark and its frequency of symptom development in natural populations of two evolutionary divergent plant types. Fungal Biol 118:340–347CrossRefPubMedGoogle Scholar
  57. Vincken JP, Heng L, de Groot A, Gruppen H (2007) Saponins, classification and occurrence in the plant kingdom. Phytochemistry 68:pp 275–297CrossRefPubMedGoogle Scholar
  58. Vo NNQ, Fukushima EO, Muranaka T (2016) Structure and hemolytic activity relationships of triterpenoid saponins and sapogenins. J Nat Med:1–9Google Scholar
  59. Wei X, Zhang X, Shen D, Wang H, Wu Q, Lu P, Qiu Y, Song J, Zhang Y, Li X (2013) Transcriptome analysis of Barbarea vulgaris infested with diamondback moth (Plutella xylostella) larvae. PLoS ONE 8:e64481CrossRefPubMedPubMedCentralGoogle Scholar
  60. Xu B, Yang Z (2013) PAMLX: a graphical user interface for PAML. Mol Biol Evol 30:2723–2724CrossRefPubMedGoogle Scholar
  61. Yang Z (2000) Phylogenetic analysis by maximum likelihood (PAML). Version.
  62. Yang Z, Bielawski JP (2000) Statistical methods for detecting molecular adaptation. Trends Ecol Evol 15:496–503CrossRefPubMedGoogle Scholar
  63. Yang Z, Nielsen R, Goldman N, Pedersen A-MK (2000) Codon-substitution models for heterogeneous selection pressure at amino acid sites. Genetics 155:431–449PubMedPubMedCentralGoogle Scholar
  64. Zhang X, Liu T, Wei X, Qiu Y, Song J, Wang H, Shen D, Agerbirk N, Li X (2015) Expression patterns, molecular markers and genetic diversity of insect-susceptible and resistant Barbarea genotypes by comparative transcriptome analysis. BMC Genomics 16:486CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Plant and Environmental Sciences and Copenhagen Plant Science CenterUniversity of CopenhagenFrederiksbergDenmark

Personalised recommendations