Plant Molecular Biology

, Volume 95, Issue 1–2, pp 199–213 | Cite as

Identification and functional characterization of a p-coumaroyl CoA 2′-hydroxylase involved in the biosynthesis of coumarin skeleton from Peucedanum praeruptorum Dunn

  • Ruolan Yao
  • Yucheng Zhao
  • Tingting Liu
  • Chuanlong Huang
  • Sheng Xu
  • Ziwei Sui
  • Jun Luo
  • Lingyi Kong


Key message

A p-coumaroyl CoA 2′-hydroxylase responsible for the formation of coumarin lactone ring was identified from Peucedanum praeruptorum Dunn and functionally characterized in vitro.


Coumarins are important plant secondary metabolites with a variety of biological activities. Ortho-hydroxylation of cinnamates leads to the formation of coumarin lactone ring and is generally thought to be a key step in coumarin biosynthesis. However, ortho-hydroxylases, especially p-coumaroyl CoA 2′-hydroxylase (C2′H) responsible for the biosynthesis of the most common coumarin skeleton, have received insufficient attention. Here, a putative ortho-hydroxylase PpC2′H was isolated from P. praeruptorum Dunn, a traditional Chinese medicinal herb rich in coumarins. Expression profile indicated that PpC2′H exhibited the highest transcript level in roots and could be up-regulated by MeJA elicitation. Subcellular localization of PpC2′H was demonstrated to be cytosol in planta. In order to functionally characterize PpC2′H, the purified recombinant protein was incubated with various potential substrates. HPLC-ESI-MS analysis indicated that PpC2′H catalyzed the conversion of p-coumaroyl CoA into hydroxylated intermediate, which then underwent spontaneous lactonization to generate umbelliferone. Our data also showed that light would promote the spontaneous process. In addition, based on homology modeling and site-directed mutagenesis, amino acid residues Phe-130, Lys-141, Asn-207, His-224, Asp-226, His-282 and Phe-298 were verified essential for enzymatic activity. These findings provide insight into structure–function relationship of this pivotal ortho-hydroxylase and also contribute to elucidating the biosynthetic mechanism of coumarin skeleton.


p-Coumaroyl CoA 2′-hydroxylase Peucedanum praeruptorum Coumarin biosynthesis Functional characterization Site-directed mutagenesis 



This research was supported in part by the Natural Science Fund in Jiangsu Province (BK20170736), China Postdoctoral Science Foundation (1600020005), the National Natural Science Foundation of China (81430092), the Program for New Century Excellent Talents in University (NCET-2013-1035), the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), the Program for Changjiang Scholars and Innovative Research Team in University (IRT_15R63), and the Ph.D. Programs Foundation of Ministry of Education of China (20120096130002). We also thank the Cellular and Molecular Biology Center of China Pharmaceutical University for assistance with confocal microscopy work and we are grateful to Xiao-Nan Ma for her technical help.

Author contributions

RY, YZ, JL and LK conceived and designed the work; RY, TL, YZ, SX and ZS performed the experiments; RY and CH interpreted and analyzed the data; RY wrote the paper; RY, YZ, TL, JL and LK revised the paper critically. All authors read and approved the final manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11103_2017_650_MOESM1_ESM.pdf (892 kb)
Supplementary material 1 (PDF 891 KB)


  1. Bai Y, Li D, Zhou T, Qin N, Li Z, Yu Z, Hua H (2016) Coumarins from the roots of Angelica dahurica with antioxidant and antiproliferative activities. J Funct Foods 20:453–462. doi: 10.1016/j.jff.2015.11.018 CrossRefGoogle Scholar
  2. Beuerle T, Pichersky E (2002) Enzymatic synthesis and purification of aromatic coenzyme a esters. Anal Biochem 302:305–312. doi: 10.1006/abio.2001.5574 CrossRefPubMedGoogle Scholar
  3. Bourgaud F, Hehn A, Larbat R, Doerper S, Gontier E, Kellner S, Matern U (2006) Biosynthesis of coumarins in plants: a major pathway still to be unravelled for cytochrome P450 enzymes. Phytochem Rev 5:293–308. doi: 10.1007/s11101-006-9040-2 CrossRefGoogle Scholar
  4. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. doi: 10.1006/abio.1976.9999 CrossRefPubMedGoogle Scholar
  5. Bugg TDH (2003) Dioxygenase enzymes: catalytic mechanisms and chemical models. Tetrahedron 59:7075–7101. doi: 10.1016/s0040-4020(03)00944-x CrossRefGoogle Scholar
  6. Endler A, Martens S, Wellmann F, Matern U (2008) Unusually divergent 4-coumarate:CoA-ligases from Ruta graveolens L. Plant Mol Biol 67:335–346. doi: 10.1007/s11103-008-9323-7 CrossRefPubMedGoogle Scholar
  7. Ferrer JL, Austin MB, Stewart C, Noel JP (2008) Structure and function of enzymes involved in the biosynthesis of phenylpropanoids. Plant Physiol Biochem 46:356–370. doi: 10.1016/j.plaphy.2007.12.009 CrossRefPubMedGoogle Scholar
  8. Figueiras TS, Neves-Petersen MT, Petersen SB (2011) Activation energy of light induced isomerization of resveratrol. J Fluoresc 21:1897–1906. doi: 10.1007/s10895-011-0886-3 CrossRefPubMedGoogle Scholar
  9. Hahlbrock K, Scheel D (1989) Physiology and molecular biology of phenylpropanoid metabolism. Annu Rev Plant Physiol Plant Mol Bioi 40:347–369. doi: 10.1146/annurev.pp.40.060189.002023 CrossRefGoogle Scholar
  10. Hall BG (2013) Building phylogenetic trees from molecular data with MEGA. Mol Biol Evol 30:1229–1235. doi: 10.1093/molbev/mst012 CrossRefPubMedGoogle Scholar
  11. Haskins FA, Williams LG, Gorz HJ (1964) Light-induced trans to cis conversion of β-d-glucosyl o-hydroxycinnamic acid in Melilotus alba leaves. Plant Physiol 39:777–781. doi: 10.1104/pp.39.5.777 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Kai K, Mizutani M, Kawamura N, Yamamoto R, Tamai M, Yamaguchi H, Sakata K, Shimizu B (2008) Scopoletin is biosynthesized via ortho-hydroxylation of feruloyl CoA by a 2-oxoglutarate-dependent dioxygenase in Arabidopsis thaliana. Plant J 55:989–999. doi: 10.1111/j.1365-313X.2008.03568.x CrossRefPubMedGoogle Scholar
  13. Kal S, Que L (2017) Dioxygen activation by nonheme iron enzymes with the 2-His-1-carboxylate facial triad that generate high-valent oxoiron oxidants. J Biol Inorg Chem 22:339–365. doi: 10.1007/s00775-016-1431-2 CrossRefPubMedGoogle Scholar
  14. Kawai Y, Ono E, Mizutani M (2014) Evolution and diversity of the 2-oxoglutarate-dependent dioxygenase superfamily in plants. Plant J 78:328–343. doi: 10.1111/tpj.12479 CrossRefPubMedGoogle Scholar
  15. Keating GJ, O’Kennedy R (1997) The chemistry and occurrence of coumarins. In: O’Kennedy R, Thornes RD (eds) Coumarins: biology, applications and mode of action. Wiley, Chichester, pp 23–66Google Scholar
  16. Kim JH, Kim JK, Ahn EK, Ko HJ, Cho YR, Lee CH, Kim YK, Bae GU, Oh JS, Seo DW (2015) Marmesin is a novel angiogenesis inhibitor: regulatory effect and molecular mechanism on endothelial cell fate and angiogenesis. Cancer Lett 369:323–330. doi: 10.1016/j.canlet.2015.09.021 CrossRefPubMedGoogle Scholar
  17. Kong L, Li Y, Min Z, Li X, Zhu T (1996) Coumarins from Peucedanum praeruptorum. Phytochemistry 41:1423–1426. doi: 10.1016/0031-9422(95)00783-0 CrossRefGoogle Scholar
  18. Kühnl T, Koch U, Heller W, Wellmann E (1989) Elicitor induced S-adenosyl-l-methionine: caffeoyl-CoA 3-O-methyltransferase from carrot cell suspension cultures. Plant Sci 60:21–25. doi: 10.1016/0168-9452(89)90039-3 CrossRefGoogle Scholar
  19. Liu T, Yao R, Zhao Y, Xu S, Huang C, Luo J, Kong L (2017) Cloning, functional characterization and site-directed mutagenesis of 4-coumarate: coenzyme A ligase (4CL) involved in coumarin biosynthesis in Peucedanum praeruptorum Dunn. Front Plant Sci 8:4. doi: 10.3389/fpls.2017.00004 PubMedPubMedCentralGoogle Scholar
  20. Lukacin R, Britsch L (1997) Identification of strictly conserved histidine and arginine residues as part of the active site in Petunia hybrida flavanone 3β-hydroxylase. Eur J Biochem 249:748–757. doi: 10.1111/j.1432-1033.1997.t01-2-00748.x CrossRefPubMedGoogle Scholar
  21. Markolovic S, Wilkins SE, Schofield CJ (2015) Protein hydroxylation catalyzed by 2-oxoglutarate-dependent oxygenases. J Biol Chem 290:20712–20722. doi: 10.1074/jbc.R115.662627 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Matern U (1991) Coumarins and other phenylpropanoid compounds in the defense response of plant cells. Planta Med 57:S15-S20. doi: 10.1055/s-2006-960224 CrossRefGoogle Scholar
  23. Matsumoto S, Mizutani M, Sakata K, Shimizu B (2012) Molecular cloning and functional analysis of the ortho-hydroxylases of p-coumaroyl coenzyme A/feruloyl coenzyme A involved in formation of umbelliferone and scopoletin in sweet potato, Ipomoea batatas (L.) Lam. Phytochemistry 74:49–57. doi: 10.1016/j.phytochem.2011.11.009 CrossRefPubMedGoogle Scholar
  24. Metternich JB, Gilmour R (2015) A bio-inspired, catalytic E → Z isomerization of activated olefins. J Am Chem Soc 137:11254–11257. doi: 10.1021/jacs.5b07136 CrossRefPubMedGoogle Scholar
  25. Metternich JB, Gilmour R (2016) One photocatalyst, n activation modes strategy for cascade catalysis: emulating coumarin biosynthesis with (-)-riboflavin. J Am Chem Soc 138:1040–1045. doi: 10.1021/jacs.5b12081 CrossRefPubMedGoogle Scholar
  26. Murray RD (1989) Coumarins. Nat Prod Rep 6:591–624CrossRefPubMedGoogle Scholar
  27. Ojala T, Remes S, Haansuu P, Vuorela H, Hiltunen R, Haahtela K, Vuorela P (2000) Antimicrobial activity of some coumarin containing herbal plants growing in Finland. J Ethnopharmacol 73:299–305. doi: 10.1016/S0378-8741(00)00279-8 CrossRefPubMedGoogle Scholar
  28. Roselli S, Olry A, Vautrin S, Coriton O, Ritchie D, Galati G, Navrot N, Krieger C, Vialart G, Berges H, Bourgaud F, Hehn A (2016) A bacterial artificial chromosome (BAC) genomic approach reveals partial clustering of the furanocoumarin pathway genes in parsnip. Plant J 89:1119–1132. doi: 10.1111/tpj.13450 CrossRefGoogle Scholar
  29. Schinkovitz A, Gibbons S, Stavri M, Cocksedge MJ, Bucar F (2003) Ostruthin: an antimycobacterial coumarin from the roots of Peucedanum ostruthium. Planta Med 69:369–371. doi: 10.1055/s-2003-38876 CrossRefPubMedGoogle Scholar
  30. Schlucking K, Edel KH, Koster P, Drerup MM, Eckert C, Steinhorst L, Waadt R, Batistic O, Kudla J (2013) A new β-estradiol-inducible vector set that facilitates easy construction and efficient expression of transgenes reveals CBL3-dependent cytoplasm to tonoplast translocation of CIPK5. Mol Plant 6:1814–1829. doi: 10.1093/mp/sst065 CrossRefPubMedGoogle Scholar
  31. Schmid NB, Giehl RF, Doll S, Mock HP, Strehmel N, Scheel D, Kong X, Hider RC, von Wiren N (2014) Feruloyl-CoA 6′-hydroxylase1-dependent coumarins mediate iron acquisition from alkaline substrates in Arabidopsis. Plant Physiol 164:160–172. doi: 10.1104/pp.113.228544 CrossRefPubMedGoogle Scholar
  32. Schmittgen TD (2006) Quantitative gene expression by real-time PCR: a complete protocol. In: Dorak MT (ed) Real-time PCR. Taylor and Francis Press, New York, pp 127–137Google Scholar
  33. Shao M (2010) Pharmacopoeia of the People’s Republic of China (Part I). Chemical Industry Press, BeijingGoogle Scholar
  34. Shimizu B (2014) 2-Oxoglutarate-dependent dioxygenases in the biosynthesis of simple coumarins. Front Plant Sci 5:549. doi: 10.3389/fpls.2014.00549 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Sun X, Zhou D, Kandavelu P, Zhang H, Yuan Q, Wang BC, Rose J, Yan Y (2015) Structural insights into substrate specificity of feruloyl-CoA 6′-hydroxylase from Arabidopsis thaliana. Sci Rep 5:10355. doi: 10.1038/srep10355 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Teutsch HG, Hasenfratz MP, Lesot A, Stoltz C, Garnier JM, Jeltsch JM, Durst F, Werck-Reichhart D (1993) Isolation and sequence of a cDNA encoding the Jerusalem artichoke cinnamate 4-hydroxylase, a major plant cytochrome P450 involved in the general phenylpropanoid pathway. Proc Natl Acad Sci USA 90:4102–4106CrossRefPubMedPubMedCentralGoogle Scholar
  37. Vialart G, Hehn A, Olry A, Ito K, Krieger C, Larbat R, Paris C, Shimizu B, Sugimoto Y, Mizutani M, Bourgaud F (2012) A 2-oxoglutarate-dependent dioxygenase from Ruta graveolens L. exhibits p-coumaroyl CoA 2′-hydroxylase activity (C2′H): a missing step in the synthesis of umbelliferone in plants. Plant J 70:460–470. doi: 10.1111/j.1365-313X.2011.04879.x CrossRefPubMedGoogle Scholar
  38. Weise NJ, Parmeggiani F, Ahmed ST, Turner NJ (2015) The bacterial ammonia lyase EncP: a tunable biocatalyst for the synthesis of unnatural amino acids. J Am Chem Soc 137:12977–12983. doi: 10.1021/jacs.5b07326 CrossRefPubMedGoogle Scholar
  39. Witaicenis A, Seito LN, da Silveira Chagas A, de Almeida LD Jr, Luchini AC, Rodrigues-Orsi P, Cestari SH, Di Stasi LC (2014) Antioxidant and intestinal anti-inflammatory effects of plant-derived coumarin derivatives. Phytomedicine 21:240–246. doi: 10.1016/j.phymed.2013.09.001 CrossRefPubMedGoogle Scholar
  40. Wu JY, Fong WF, Zhang JX, Leung CH, Kwong HL, Yang MS, Li D, Cheung HY (2003) Reversal of multidrug resistance in cancer cells by pyranocoumarins isolated from Radix Peucedani. Eur J Pharmacol 473:9–17. doi: 10.1016/S0014-2999(03)01946-0 CrossRefPubMedGoogle Scholar
  41. Wu FH, Shen SC, Lee LY, Lee SH, Chan MT, Lin CS (2009) Tape-Arabidopsis sandwich: a simpler Arabidopsis protoplast isolation method. Plant Methods 5:16. doi: 10.1186/1746-4811-5-16 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Zhao Y, Liu T, Luo J, Zhang Q, Xu S, Han C, Xu J, Chen M, Chen Y, Kong L (2015) Integration of a decrescent transcriptome and metabolomics dataset of Peucedanum praeruptorum to investigate the CYP450 and MDR genes involved in coumarins biosynthesis and transport. Front Plant Sci 6:996. doi: 10.3389/fpls.2015.00996 PubMedPubMedCentralGoogle Scholar
  43. Zhao Y, Luo J, Xu S, Wang W, Liu T, Han C, Chen Y, Kong L (2016a) Selection of reference genes for gene expression normalization in Peucedanum praeruptorum Dunn under abiotic stresses, hormone treatments and different tissues. PLoS ONE 11:e0152356. doi: 10.1371/journal.pone.0152356 CrossRefPubMedPubMedCentralGoogle Scholar
  44. Zhao Y, Wang N, Zeng Z, Xu S, Huang C, Wang W, Liu T, Luo J, Kong L (2016b) Cloning, functional characterization, and catalytic mechanism of a bergaptol O-methyltransferase from Peucedanum praeruptorum Dunn. Front Plant Sci 7:722. doi: 10.3389/fpls.2016.00722 PubMedPubMedCentralGoogle Scholar
  45. Zobel AM (1997) Coumarins in fruits and vegetables. In: Tomas-Barberan FAA, Robins RJ (eds) Phytochemistry of fruits and vegetables. Clarendon Press, Oxford, pp 173–203Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Ruolan Yao
    • 1
  • Yucheng Zhao
    • 1
  • Tingting Liu
    • 1
  • Chuanlong Huang
    • 1
  • Sheng Xu
    • 2
  • Ziwei Sui
    • 1
  • Jun Luo
    • 1
  • Lingyi Kong
    • 1
  1. 1.Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural MedicinesChina Pharmaceutical UniversityNanjingPeople’s Republic of China
  2. 2.Institute of BotanyJiangsu Province and Chinese Academy of SciencesNanjingPeople’s Republic of China

Personalised recommendations