Plant Molecular Biology

, Volume 95, Issue 1–2, pp 181–197 | Cite as

Genome-wide analysis of GDSL-type esterases/lipases in Arabidopsis

  • Chia-Ping Lai
  • Li-Min Huang
  • Long-Fang O. Chen
  • Ming-Tsair Chan
  • Jei-Fu Shaw


Key message

In this present study, we introduce a fundamental framework and provide information regarding the possible roles of GDSL-type esterase/lipase gene family in Arabidopsis.


GDSL-type esterases/lipases are hydrolytic enzymes with multifunctional properties such as broad substrate specificity, regiospecificity, and stereoselectivity. In this study, we identified 105 GDSL-type esterase/lipase genes in Arabidopsis thaliana by conducting a comprehensive computational analysis. Expression studies indicated that GDSL-type lipase proteins showed varied expression patterns. Phylogenetic tree analysis indicated that AtGELP (Arabidopsis thaliana GDSL-type esterase/lipase protein) gene family was divided into four clades. The phylogenetic analysis, combined with protein motif architectures, and expression profiling were used to predict the roles AtGELP genes. To investigate the physical roles of the AtGELP gene family, we successfully screened 88 AtGELP T-DNA knockout lines for 54 AtGELP genes from 199 putative SALK T-DNA mutants. Transgenic plants of AtGELP genes were used to elucidate the phenotypic characteristics in various developmental stages or stress conditions. Our results suggest that the AtGELP genes have diverse physical functions such as affecting the germination rate and early growth of seedlings subjected to high concentrations of glucose, or being involved in biotic stress responses.


GDSL Lipase Esterase Genome-wide analysis Arabidopsis 



This research was supported by a Grant from the National Science Council of Taiwan Number NSC 102-2313-B-269-001 to C. P. Lai.

Author Contributions

CPL and LMH supervised the research design, performed research, and analyzed the data. MTC and LFOC designed research and analyzed the data. JFS supervised the study, designed research, analyzed data, and drafted the manuscript. All authors approved the final manuscript.

Supplementary material

11103_2017_648_MOESM1_ESM.pdf (394 kb)
Supplementary material 1 (PDF 393 KB)
11103_2017_648_MOESM2_ESM.ppt (440 kb)
Supplementary material 2 (PPT 440 KB)


  1. Akoh CC, Lee GC, Liaw YC, Huang TH, Shaw JF (2004) GDSL family of serine esterases/lipases. Prog Lipid Res 43(6):534–552. doi: 10.1016/j.plipres.2004.09.002 CrossRefPubMedGoogle Scholar
  2. Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, Ren J, Li WW, Noble WS (2009) MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res 37:W202-208. doi: 10.1093/nar/gkp335 CrossRefGoogle Scholar
  3. Beisson F, Gardies AM, Teissere M, Ferte N, Noat G (1997) An esterase neosynthesized in post-germinated sunflower seeds is related to a new family of lipolytic enzymes. Plant Physiol Biochem 35(10):761–765Google Scholar
  4. Chen MX, Du X, Zhu Y, Wang Z, Hua SJ, Li ZL, Guo WL, Zhang GP, Peng JR, Jiang LX (2012) Seed Fatty Acid Reducer acts downstream of gibberellin signalling pathway to lower seed fatty acid storage in Arabidopsis. Plant Cell Environ 35(12):2155–2169CrossRefPubMedGoogle Scholar
  5. Chepyshko H, Lai CP, Huang LM, Liu JH, Shaw JF (2012) Multifunctionality and diversity of GDSL esterase/lipase gene family in rice (Oryza sativa L. japonica) genome: new insights from bioinformatics analysis. BMC Genom 13:309. doi: 10.1186/1471-2164-13-309 CrossRefGoogle Scholar
  6. Clauss K, Baumert A, Nimtz M, Milkowski C, Strack D (2008) Role of a GDSL lipase-like protein as sinapine esterase in Brassicaceae. Plant J 53(5):802–813. doi: 10.1111/j.1365-313X.2007.03374.x CrossRefPubMedGoogle Scholar
  7. Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16(6):735–743CrossRefPubMedGoogle Scholar
  8. Coque L, Neogi P, Pislariu C, Wilson KA, Catalano C, Avadhani M, Sherrier DJ, Dickstein R (2008) Transcription of ENOD8 in Medicago truncatula nodules directs ENOD8 esterase to developing and mature symbiosomes. Mol Plant-Microbe Interact 21(4):404–410. doi:  10.1094/Mpmi-21-4-0404 CrossRefPubMedGoogle Scholar
  9. de la Torre F, Sampedro J, Zarra I, Revilla G (2002) AtFXG1, an Arabidopsis gene encoding alpha -l-fucosidase active against fucosylated xyloglucan Oligosaccharides. Plant Physiol 128(1):247–255. doi: 10.1104/pp.010508 CrossRefPubMedCentralGoogle Scholar
  10. Dickstein R, Prusty R, Peng T, Ngo W, Smith ME (1993) Enod8, a novel early nodule-specific gene, is expressed in empty alfalfa nodules. Mol Plant-Microbe Interact 6(6):715–721CrossRefPubMedGoogle Scholar
  11. Hong JK, Choi HW, Hwang IS, Kim DS, Kim NH, Choi du S, Kim YJ, Hwang BK (2008) Function of a novel GDSL-type pepper lipase gene, CaGLIP1, in disease susceptibility and abiotic stress tolerance. Planta 227(3):539–558. doi: 10.1007/s00425-007-0637-5 CrossRefPubMedGoogle Scholar
  12. Hruz T, Laule O, Szabo G, Wessendorp F, Bleuler S, Oertle L, Widmayer P, Gruissem W, Zimmermann P (2008) Genevestigator v3: a reference expression database for the meta-analysis of transcriptomes. Adv Bioinform 2008:420747. doi: 10.1155/2008/420747 CrossRefGoogle Scholar
  13. Huang LM, Lai CP, Chen LO, Chan MT, Shaw JF (2015) Arabidopsis SFAR4 is a novel GDSL-type esterase involved in fatty acid degradation and glucose tolerance. Bot Stud 56(1):33. doi: 10.1186/s40529-015-0114-6 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Kim KJ, Lim JH, Kim MJ, Kim T, Chung HM, Paek KH (2008) GDSL-lipase1 (CaGL1) contributes to wound stress resistance by modulation of CaPR-4 expression in hot pepper. Biochem Biophys Res Commun 374(4):693–698. doi: 10.1016/j.bbrc.2008.07.120 CrossRefPubMedGoogle Scholar
  15. Kim HG, Kwon SJ, Jang YJ, Nam MH, Chung JH, Na YC, Guo HW, Park OK (2013) GDSL lipase 1 modulates plant immunity through feedback regulation of ethylene signaling. Plant Physiol 163(4):1776–1791. doi: 10.1104/pp.113.225649 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Kim HG, Kwon SJ, Jang YJ, Chung JH, Nam MH, Park OK (2014) GDSL lipase 1 regulates ethylene signaling and ethylene-associated systemic immunity in Arabidopsis. FEBS Lett 588(9):1652–1658. doi: 10.1016/j.febslet.2014.02.062 CrossRefPubMedGoogle Scholar
  17. Kram BW, Bainbridge EA, Perera MA, Carter C (2008) Identification, cloning and characterization of a GDSL lipase secreted into the nectar of Jacaranda mimosifolia. Plant Mol Biol 68(1–2):173–183. doi: 10.1007/s11103-008-9361-1 CrossRefPubMedGoogle Scholar
  18. Kwon SJ, Jin HC, Lee S, Nam MH, Chung JH, Kwon SI, Ryu CM, Park OK (2009) GDSL lipase-like 1 regulates systemic resistance associated with ethylene signaling in Arabidopsis. Plant J 58(2):235–245. doi: 10.1111/j.1365-313X.2008.03772.x CrossRefPubMedGoogle Scholar
  19. Lee KA (2003) Characterization of a salicylic acid- and pathogen-induced lipase-like gene in chinese cabbage. J Biochem Mol Biol 36(5):433–441PubMedGoogle Scholar
  20. Lee DS, Kim BK, Kwon SJ, Jin HC, Park OK (2009) Arabidopsis GDSL lipase 2 plays a role in pathogen defense via negative regulation of auxin signaling. Biochem Biophys Res Commun 379(4):1038–1042. doi: 10.1016/j.bbrc.2009.01.006 CrossRefPubMedGoogle Scholar
  21. Mikleusevic G, Salopek-Sondi B, Luic M (2009) Arab-1, a GDSL lipase from the model plant, Arabidopsis thaliana (L.) Heynh. Croat Chem Acta 82(2):439–447Google Scholar
  22. Naranjo MA, Forment J, Roldan M, Serrano R, Vicente O (2006) Overexpression of Arabidopsis thaliana LTL1, a salt-induced gene encoding a GDSL-motif lipase, increases salt tolerance in yeast and transgenic plants. Plant Cell Environ 29(10):1890–1900. doi: 10.1111/j.1365-3040.2006.01565.x CrossRefPubMedGoogle Scholar
  23. Solanas M, Escrich E (1997) An improved protocol to increase sensitivity of Southern blot using dig-labelled DNA probes. J Biochem Biophys Methods 35(3):153–159. doi: 10.1016/S0165-022x(97)00031-6
  24. Takahashi K, Shimada T, Kondo M, Tamai A, Mori M, Nishimura M, Hara-Nishimura I (2010) Ectopic expression of an esterase, which is a candidate for the unidentified plant cutinase, causes cuticular defects in Arabidopsis thaliana. Plant Cell Physiol 51(1):123–131. doi: 10.1093/pcp/pcp173 CrossRefPubMedGoogle Scholar
  25. Updegraff EP, Zhao F, Preuss D (2009) The extracellular lipase EXL4 is required for efficient hydration of Arabidopsis pollen. Sex Plant Reprod 22(3):197–204. doi: 10.1007/s00497-009-0104-5 CrossRefPubMedGoogle Scholar
  26. Upton C, Buckley JT (1995) A new family of lipolytic enzymes? Trends Biochem Sci 20(5):178–179CrossRefPubMedGoogle Scholar
  27. Volokita M, Rosilio-Brami T, Rivkin N, Zik M (2011) Combining comparative sequence and genomic data to ascertain phylogenetic relationships and explore the evolution of the large GDSL-lipase family in land plants. Mol Biol Evol 28(1):551–565. doi: 10.1093/molbev/msq226 CrossRefPubMedGoogle Scholar
  28. Wu SH, Ramonell K, Gollub J, Somerville S (2001) Plant gene expression profiling with DNA microarrays. Plant Physiol Biochem 39(11):917–926CrossRefGoogle Scholar
  29. Zhang Z, Ober JA, Kliebenstein DJ (2006) The gene controlling the quantitative trait locus EPITHIOSPECIFIER MODIFIER1 alters glucosinolate hydrolysis and insect resistance in Arabidopsis. Plant Cell 18(6):1524–1536. doi: 10.1105/tpc.105.039602 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Zimmermann P, Hirsch-Hoffmann M, Hennig L, Genevestigator GW (2004a) Arabidopsis microarray database and analysis toolbox. Plant Physiol 136(4):4335–4335CrossRefGoogle Scholar
  31. Zimmermann P, Hirsch-Hoffmann M, Hennig L, Gruissem W (2004b) GENEVESTIGATOR. Arabidopsis microarray database and analysis toolbox. Plant Physiol 136(1):2621–2632CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Chia-Ping Lai
    • 1
  • Li-Min Huang
    • 2
    • 6
  • Long-Fang O. Chen
    • 2
    • 3
  • Ming-Tsair Chan
    • 2
    • 5
    • 6
  • Jei-Fu Shaw
    • 2
    • 4
    • 5
    • 7
  1. 1.Department of Food and Beverage ManagementFar East UniversityTainanTaiwan, Republic of China
  2. 2.Institute of BiotechnologyNational Cheng Kung UniversityTainanTaiwan, Republic of China
  3. 3.Institute of Plant and Microbial BiologyAcademia SinicaTaipeiTaiwan, Republic of China
  4. 4.Department of Biological Science and TechnologyI-Shou UniversityKaohsiungTaiwan, Republic of China
  5. 5.Agricultural Biotechnology Research CenterAcademia SinicaTaipeiTaiwan, Republic of China
  6. 6.Academia Sinica Biotechnology Center in Southern TaiwanTainanTaiwan, Republic of China
  7. 7.Agricultural Biotechnology CenterNational Chung Hsing UniversityTaichungTaiwan, Republic of China

Personalised recommendations