Advertisement

Plant Molecular Biology

, Volume 95, Issue 1–2, pp 33–50 | Cite as

Identification of a seed coat-specific promoter fragment from the Arabidopsis MUCILAGE-MODIFIED4 gene

  • Gillian H. Dean
  • Zhaoqing Jin
  • Lin Shi
  • Elahe Esfandiari
  • Robert McGee
  • Kylie Nabata
  • Tiffany Lee
  • Ljerka Kunst
  • Tamara L. Western
  • George W. Haughn
Article

Abstract

Key message

The Arabidopsis seed coat-specific promoter fragment described is an important tool for basic and applied research in Brassicaceae species.

Abstract

During differentiation, the epidermal cells of the Arabidopsis seed coat produce and secrete large quantities of mucilage. On hydration of mature seeds, this mucilage becomes easily accessible as it is extruded to form a tightly attached halo at the seed surface. Mucilage is composed mainly of pectin, and also contains the key cell wall components cellulose, hemicellulose, and proteins, making it a valuable model for studying numerous aspects of cell wall biology. Seed coat-specific promoters are an important tool that can be used to assess the effects of expressing biosynthetic enzymes and diverse cell wall-modifying proteins on mucilage structure and function. Additionally, they can be used for production of easily accessible recombinant proteins of commercial interest. The MUCILAGE-MODIFIED4 (MUM4) gene is expressed in a wide variety of plant tissues and is strongly up-regulated in the seed coat during mucilage synthesis, implying the presence of a seed coat-specific region in its promoter. Promoter deletion analysis facilitated isolation of a 308 base pair sequence (MUM4 0.3Pro ) that directs reporter gene expression in the seed coat cells of both Arabidopsis and Camelina sativa, and is regulated by the same transcription factor cascade as endogenous MUM4. Therefore, MUM4 0.3Pro is a promoter fragment that serves as a new tool for seed coat biology research.

Keywords

Seed coat-specific promoter Arabidopsis Brassica MUCILAGE-MODIFIED4 (MUM4

Notes

Acknowledgements

We thank the staff of the University of British Columbia BioImaging Facility for invaluable help with microscopy. This research was funded by two Natural Sciences and Engineering Research Council of Canada Strategic Grants, one to G.W.H and T.L.W. and a second to G.W.H and L.K in partnership with Linnaeus Plant Sciences Inc. and Drs. Thomas Roscoe and Martine Devic funded by the French National Research Agency under the programme Investissements d′avenir: ANR-10-LABX-0001-01 and the Agropolis Fondation under the reference Open Science SYNERGY 1202-048.

Author contributions

GHD designed and conducted research, analyzed data, and wrote the article. ZJ, LS and EE designed and conducted research, and analyzed data. RM, KN and TL conducted research. LK and TLW designed research and analyzed data. GWH designed research, analyzed data, and wrote the article.

Supplementary material

11103_2017_631_MOESM1_ESM.pdf (6.6 mb)
Supplementary material 1 (PDF 6759 KB)

References

  1. Alonso JM, Stepanova AN, Leisse TJ, Kim CJ, Chen H, Shinn P, Stevenson DK, Zimmerman J, Barajas P, Cheuk R, Gadrinab C, Heller C, Jeske A, Koesema E, Meyers CC, Parker H, Prednis L, Ansari Y, Choy N, Deen H, Geralt M, Hazari N, Hom E, Karnes M, Mulholland C, Ndubaku R, Schmidt I, Guzman P, Aguilar-Henonin L, Schmid M, Weigel D, Carter DE, Marchand T, Risseeuw E, Brogden D, Zeko A, Crosby WL, Berry CC, Ecker JR (2003) Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301:653–657. doi: 10.1126/science.1086391 CrossRefPubMedGoogle Scholar
  2. Arsovski AA, Haughn GW, Western TL (2010) Seed coat mucilage cells of Arabidopsis thaliana as a model for plant cell wall research. Plant Signal Behav 5:796–801. doi: 10.4161/psb.5.7.11773 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Beeckman T, De Rycke R, Viane R, Inzé D (2000) Histological study of seed coat development in Arabidopsis thaliana. J Plant Res 113:139–148. doi: 10.1007/PL00013924 CrossRefGoogle Scholar
  4. Benfey PN, Ren L, Chua NH (1990) Tissue-specific expression from CaMV 35S enhancer subdomains in early stages of plant development. EMBO J 9:1677–1684PubMedPubMedCentralGoogle Scholar
  5. Busch MA, Bomblies K, Weigel D (1999) Activation of a floral homeotic gene in Arabidopsis. Science 285:585–587. doi: 10.1126/science.285.5427.585 CrossRefPubMedGoogle Scholar
  6. Butler JEF, Kadonaga JT (2002) The RNA polymerase II core promoter: a key component in the regulation of gene expression. Genes Dev 16:2583–2592. doi: 10.1101/gad.1026202 CrossRefPubMedGoogle Scholar
  7. Dean GH, Zheng H, Tewari J, Huang J, Young DS, Hwang YT, Western TL, Carpita NC, McCann MC, Mansfield SD, Haughn GW (2007) The Arabidopsis MUM2 gene encodes a β-galactosidase required for the production of seed coat mucilage with correct hydration properties. Plant Cell 19:4007–4021. doi: 10.1105/tpc.107.050609 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Dean GH, Cao Y, Xiang D, Provart NJ, Ramsay L, Ahad A, White R, Selvaraj G, Datla R, Haughn GW (2011) Analysis of gene expression patterns during seed coat development in Arabidopsis. Mol Plant 4:1074–1091. doi: 10.1093/mp/ssr040 CrossRefPubMedGoogle Scholar
  9. DeBono AG (2012) The role and behavior of Arabidopsis thaliana lipid transfer proteins during cuticular wax deposition. PhD Thesis. University of British Columbia, VancouverGoogle Scholar
  10. El-Mezawy A, Wu L, Shah S (2009) A seed coat-specific promoter for canola. Biotechnol Lett 31:1961–1965. doi: 10.1007/s10529-009-0098-y CrossRefPubMedGoogle Scholar
  11. Esfandiari E, Jin Z, Abdeen A, Griffiths JS, Western TL, Haughn GW (2013) Identification and analysis of an outer-seed-coat-specific promoter from Arabidopsis thaliana. Plant Mol Biol 81:93–104. doi: 10.1007/s11103-012-9984-0 CrossRefPubMedGoogle Scholar
  12. Francoz E, Ranocha P, Nguyen-Kim H, Jamet E, Burlat V, Dunand C (2015) Roles of cell wall peroxidases in plant development. Phytochemistry 112:15–21. doi: 10.1016/j.phytochem.2014.07.020 CrossRefPubMedGoogle Scholar
  13. Gonzalez A, Mendenhall J, Huo Y, Lloyd A (2009) TTG1 complex MYBs, MYB5 and TT2, control outer seed coat differentiation. Dev Biol 325:412–421. doi: 10.1016/j.ydbio.2008.10.005 CrossRefPubMedGoogle Scholar
  14. Haughn GW, Chaudhury A (2005) Genetic analysis of seed coat development in Arabidopsis. Trends Plant Sci 10:472–477. doi: 10.1016/j.tplants.2005.08.005 CrossRefPubMedGoogle Scholar
  15. Haughn GW, Somerville C (1986) Sulfonylurea-resistant mutants of Arabidopsis thaliana. Mol Gen Genet 204:430–434. doi: 10.1007/BF00331020 CrossRefGoogle Scholar
  16. Haughn GW, Western TL (2012) Arabidopsis seed coat mucilage is a specialized cell wall that can be used as a model for genetic analysis of plant cell wall structure and function. Front Plant Sci 3:1–5. doi: 10.3389/fpls.2012.00064 CrossRefGoogle Scholar
  17. Hernandez-Garcia CM, Finer JJ (2014) Identification and validation of promoters and cis-acting regulatory elements. Plant Sci 217–218:109–119. doi: 10.1016/j.plantsci.2013.12.007 CrossRefPubMedGoogle Scholar
  18. Higo K, Ugawa Y, Iwamoto M, Korenaga T (1999) Plant cis-acting regulatory DNA elements (PLACE) database: 1999. Nucleic Acids Res 27:297–300. doi: 10.1093/nar/27.1.297 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Jefferson RA (1987) Assaying chimeric genes in plants: the GUS gene fusion system. Plant Mol Biol Rep 5:105–387. doi: 10.1007/BF02667740 CrossRefGoogle Scholar
  20. Jofuku KD, Denboer BGW, Montague MV, Okamuro JK (1994) Control of Arabidopsis flower and seed development by the homeotic gene APETALA2. Plant Cell 6:1211–1225. doi: 10.1105/tpc.6.9.1211 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Kanoria S, Burma PK (2012) A 28 nt long synthetic 5′UTR (synJ) as an enhancer of transgene expression in dicotyledonous plants. BMC Biotechnol 12:85. doi: 10.1186/1472-6750-12-85 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Koncz C, Schell J (1986) The promoter of TL-DNA gene 5 controls the tissue-specific expression of chimaeric genes carried by a novel type of Agrobacterium binary vector. Mol Gen Genet 204:383–396. doi: 10.1007/BF00331014 CrossRefGoogle Scholar
  23. Kunieda T, Shimada T, Kondo M, Nishimura M, Nishitani K, Hara-Nishimura I (2013) Spatiotemporal secretion of PEROXIDASE36 is required for seed coat mucilage extrusion in Arabidopsis. Plant Cell 25:1355–1367. doi: 10.1105/tpc.113.110072 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Kunst L, Klenz JE, Martinez-Zapater J, Haughn GW (1989) AP2 gene determines the identity of perianth organs in flowers of Arabidopsis thaliana. Plant Cell 1:1195–1208. doi: 10.1105/tpc.1.12.1195 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Li SF, Milliken ON, Pham H, Seyit R, Napoli R, Preston J, Koltunow AM, Parish RW (2009) The Arabidopsis MYB5 transcription factor regulates mucilage synthesis, seed coat development, and trichome morphogenesis. Plant Cell 21:72–89. doi: 10.1105/tpc.108.063503 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Liang M, Davis E, Gardner D, Cai X, Wu Y (2006) Involvement of AtLAC15 in lignin synthesis in seeds and in root elongation of Arabidopsis. Planta 224:1185–1196. doi: 10.1007/s00425-006-0300-6 CrossRefPubMedGoogle Scholar
  27. Lu C, Kang J (2008) Generation of transgenic plants of a potential oilseed crop Camelina sativa by Agrobacterium-mediated transformation. Plant Cell Rep 27(2):273–278. doi: 10.1007/s00299-007-0454-0 CrossRefPubMedGoogle Scholar
  28. Macquet A, Ralet MC, Kronenberger J, Marion-Poll A, North HM (2007) In-situ, chemical and macromolecular study of the composition of Arabidopsis thaliana seed coat mucilage. Plant Cell Physiol 48:984–999. doi: 10.1093/pcp/pcm068 CrossRefPubMedGoogle Scholar
  29. Mignone F, Gissi C, Liuni S, Pesole G (2002) Untranslated regions of mRNAs. Genome Biol 3:reviews0004.1–0004.10. doi: 10.1186/gb-2002-3-3-reviews0004 CrossRefGoogle Scholar
  30. Mogno I, Vallania F, Mitra RD, Cohen BA (2010) TATA is a modular component of synthetic promoters. Genome Res 20:1391–1397. doi: 10.1101/gr.106732.110 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Moïse JA, Han S, Gudynaitę-Savitch L, Johnson DA, Miki BLA (2005) Seed coats: structure, development, composition, and biotechnology. Vitr Cell Dev Biol - Plant 41:620–644. doi: 10.1079/ivp2005686 CrossRefGoogle Scholar
  32. Molina C, Grotewold E (2005) Genome wide analysis of Arabidopsis core promoters. BMC Genom 6:1–12. doi: 10.1186/1471-2164-6-25 CrossRefGoogle Scholar
  33. Nakagawa T, Kurose T, Hino T, Tanaka K, Kawamukai M, Niwa Y, Toyooka K, Matsuoka K, Jinbo T, Kimura T (2007) Development of series of gateway binary vectors, pGWBs, for realizing efficient construction of fusion genes for plant transformation. J Biosci Bioeng 104:34–41. doi: 10.1263/jbb.104.34 CrossRefPubMedGoogle Scholar
  34. Nakaune S, Yamada K, Kondo M, Kato T, Tabata S, Nishimura M, Hara-Nishimura I (2005) A vacuolar processing enzyme, δVPE, is involved in seed coat formation at the early stage of seed development. Plant Cell 17:876–887. doi: 10.1105/tpc.104.026872 CrossRefPubMedPubMedCentralGoogle Scholar
  35. North HM, Berger A, Saez-Aguayo S, Ralet M-C (2014) Understanding polysaccharide production and properties using seed coat mutants: future perspectives for the exploitation of natural variants. Ann Bot 114:1251–1263. doi: 10.1093/aob/mcu011 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Oka T, Nemoto T, Jigami Y (2006) Functional analysis of Arabidopsis thaliana RHM2/MUM4, a multidomain protein involved in UDP-d-glucose to UDP-l-rhamnose conversion. J Biol Chem 282:5389–5403. doi: 10.1074/jbc.M610196200 CrossRefPubMedGoogle Scholar
  37. Oshima Y, Mitsuda N, Nakatam M, Nakagawa T, Nagaya S, Kato K, Ohme-Takagi M (2011) Novel vector systems to accelerate functional analysis of transcription factors using chimeric repressor gene-silencing technology (CRES-T). Plant Biotechnol 28:201–210. doi: 10.5511/plantbiotechnology.11.0124a CrossRefGoogle Scholar
  38. Penfield S, Meissner RC, Shoue DA, Carpita NC, Bevan MW (2001) MYB61 is required for mucilage deposition and extrusion in the Arabidopsis seed coat. Plant Cell 13:2777–2791 doi: 10.1105/tpc.010265 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Rajeevkumar S, Anunanthini P, Sathishkumar R (2015) Epigenetic silencing in transgenic plants. Front Plant Sci 6:1–8. doi: 10.3389/fpls.2015.00693 CrossRefGoogle Scholar
  40. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez J-Y, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682. doi: 10.1038/nmeth.2019 CrossRefPubMedGoogle Scholar
  41. Shaner NC, Steinbach PA, Tsien RY (2005) A guide to choosing fluorescent proteins. Nat Methods 2:905–909. doi: 10.1038/nmeth819 CrossRefPubMedGoogle Scholar
  42. Shi L, Katavic V, Yu Y, Kunst L, Haughn GW (2012) Arabidopsis glabra2 mutant seeds deficient in mucilage biosynthesis produce more oil. Plant J 69:37–46. doi: 10.1111/j.1365-313X.2011.04768.x CrossRefPubMedGoogle Scholar
  43. Stadler R, Lauterbach C, Sauer N (2005) Cell-to-cell movement of green fluorescent protein reveals post-phloem transport in the outer integument and identifies symplastic domains in Arabidopsis seeds and embryos. Plant Physiol 139:701–712. doi: 10.1104/pp.105.065607 CrossRefPubMedPubMedCentralGoogle Scholar
  44. Stomp A-M (1992) Histochemical localization of β-glucuronidase. In: Gallagher SR (ed) GUS protocols. Academic Press, San Diego, pp 103–113CrossRefGoogle Scholar
  45. Tiwari S, Spielman M, Day RC, Scott RJ (2006) Proliferative phase endosperm promoters from Arabidopsis thaliana. Plant Biotechnol J 4:393–407. doi: 10.1111/j.1467-7652.2006.00189.x CrossRefPubMedGoogle Scholar
  46. Tominaga-Wada R, Iwata M, Sugiyama J, Kotake T, Ishida T, Yokoyama R, Nishitani K, Okada K, Wada T (2009) The GLABRA2 homeodomain protein directly regulates CESA5 and XTH17 gene expression in Arabidopsis roots. Plant J 60:564–574. doi: 10.1111/j.1365-313X.2009.03976.x CrossRefPubMedGoogle Scholar
  47. Tsai AY-L, Kunieda T, Rogalski J, Foster LJ, Ellis BE, Haughn GW (2016) Identification and characterization of seed coat mucilage proteins. Plant Physiol 173:1059–1074. doi: 10.1104/pp.16.01600 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Usadel B, Kuschinsky AM, Rosso MG, Eckermann N, Pauly M (2004) RHM2 is involved in mucilage pectin synthesis and is required for the development of the seed coat in Arabidopsis. Plant Physiol 134:286–295. doi: 10.1104/pp.103.034314 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Venter M (2007) Synthetic promoters: genetic control through cis engineering. Trends Plant Sci 12:118–124. doi: 10.1016/j.tplants.2007.01.002 CrossRefPubMedGoogle Scholar
  50. Voiniciuc C, Yang B, Schmidt MH-W, Günl M, Usadel B (2015) Starting to gel: how Arabidopsis seed coat epidermal cells produce specialized secondary cell walls. Int J Mol Sci 16:3452–3473. doi: 10.3390/ijms16023452 CrossRefPubMedPubMedCentralGoogle Scholar
  51. Walther D, Brunnemann R, Selbig J (2007) The regulatory code for transcriptional response diversity and its relation to genome structural properties in A. thaliana. PLoS Genet 3:e11. doi: 10.1371/journal.pgen.0030011 CrossRefPubMedPubMedCentralGoogle Scholar
  52. Weigel D, Glazebrook J (2006) In planta transformation of Arabidopsis. In: Arabidopsis: a laboratory manual. Cold Spring Harbour Protocols, New York, pp 119–142Google Scholar
  53. Western TL, Skinner DJ, Haughn GW (2000) Differentiation of mucilage secretory cells of the Arabidopsis seed coat. Plant Physiol 122:345–356. doi: 10.1104/pp.122.2.345 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Western TL, Burn J, Tan WL, Skinner DJ, Martin-McCaffrey L, Moffatt BA, Haughn GW (2001) Isolation and characterization of mutants defective in seed coat mucilage secretory cell development in Arabidopsis. Plant Physiol 127:998–1011. doi: 10.1104/pp.010410 CrossRefPubMedPubMedCentralGoogle Scholar
  55. Western TL, Young DS, Dean GH, Tan WL, Samuels AL, Haughn GW (2004) MUCILAGE-MODIFIED4 encodes a putative pectin biosynthetic enzyme developmentally regulated by APETALA2, TRANSPARENT TESTA GLABRA1, and GLABRA2 in the Arabidopsis seed coat. Plant Physiol 134:296–306. doi: 10.1104/pp.103.035519 CrossRefPubMedPubMedCentralGoogle Scholar
  56. Windsor JB, Symonds VV, Mendenhall J, Lloyd AM (2000) Arabidopsis seed coat development: morphological differentiation of the outer integument. Plant J 22:483–493. doi: 10.1046/j.1365-313x.2000.00756.x CrossRefPubMedGoogle Scholar
  57. Wu L, El-mezawy A, Duong M, Shah S (2010) Two seed coat-specific promoters are functionally conserved between Arabidopsis thaliana and Brassica napus. Vitr Cell Dev Biol - Plant 46:338–347. doi: 10.1007/s11627-010-9277-8 CrossRefGoogle Scholar
  58. Wu L, El-Mezawy A, Shah S (2011) A seed coat outer integument-specific promoter for Brassica napus. Plant Cell Rep 30:75–80. doi: 10.1007/s00299-010-0945-2 CrossRefPubMedGoogle Scholar
  59. Yeung ECT, Stasolla C, Sumner MJ, Huang BQ (2015) Plant microtechniques and protocols. Springer International Publishing, SwitzerlandCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Gillian H. Dean
    • 1
  • Zhaoqing Jin
    • 1
    • 3
  • Lin Shi
    • 1
    • 4
  • Elahe Esfandiari
    • 1
    • 5
  • Robert McGee
    • 1
  • Kylie Nabata
    • 1
  • Tiffany Lee
    • 1
  • Ljerka Kunst
    • 1
  • Tamara L. Western
    • 2
  • George W. Haughn
    • 1
  1. 1.Department of BotanyUniversity of British ColumbiaVancouverCanada
  2. 2.Department of BiologyMcGill UniversityMontrealCanada
  3. 3.Qiagen China (Shanghai) Co., LtdPudongPeople’s Republic of China
  4. 4.Department of Molecular BiologyMassachusetts General HospitalBostonUSA
  5. 5.Department of Pharmaceutical Sciences, College of PharmacyOregon State UniversityCorvallisUSA

Personalised recommendations