Plant Molecular Biology

, Volume 91, Issue 6, pp 661–672 | Cite as

Auxin response under osmotic stress

  • Victoria Naser
  • Eilon Shani


The phytohormone auxin (indole-3-acetic acid, IAA) is a small organic molecule that coordinates many of the key processes in plant development and adaptive growth. Plants regulate the auxin response pathways at multiple levels including biosynthesis, metabolism, transport and perception. One of the most striking aspects of plant plasticity is the modulation of development in response to changing growth environments. In this review, we explore recent findings correlating auxin response-dependent growth and development with osmotic stresses. Studies of water deficit, dehydration, salt, and other osmotic stresses point towards direct and indirect molecular perturbations in the auxin pathway. Osmotic stress stimuli modulate auxin responses by affecting auxin biosynthesis (YUC, TAA1), transport (PIN), perception (TIR/AFB, Aux/IAA), and inactivation/conjugation (GH3, miR167, IAR3) to coordinate growth and patterning. In turn, stress-modulated auxin gradients drive physiological and developmental mechanisms such as stomata aperture, aquaporin and lateral root positioning. We conclude by arguing that auxin-mediated growth inhibition under abiotic stress conditions is one of the developmental and physiological strategies to acclimate to the changing environment.


Auxin response Auxin metabolism Auxin biosynthesis Auxin transport Auxin perception Osmotic stress Drought stress Abiotic stress Hormone-stress crosstalk 



We thank Claus Schwechheimer (TUM), Doron Shkolnik-Inbar (TAU) and Mark Estelle (UCSD) for critically reading the article and for helpful suggestions. Research on related topics in the Shani lab is supported by grants from the Israel Science Foundation (1832/14) and (2158/14), GIF, the German-Israeli Foundation for Scientific Research and Development (I-236-203.17-2014), and the Human Frontier Science Program (HFSP-RGY0075/2015).

Author contribution

Victoria Naser and Eilon Shani wrote the manuscript.


  1. Abas L, Benjamins R, Malenica N, Paciorek T, Wišniewska J, Moulinier-Anzola JC, Sieberer T, Friml J, Luschnig C (2006) Intracellular trafficking and proteolysis of the Arabidopsis auxin-efflux facilitator PIN2 are involved in root gravitropism. Nat Cell Biol 8:249–256PubMedCrossRefGoogle Scholar
  2. Abel S, Theologis A (1996) Early genes and auxin action. Plant Physiol 111:9PubMedPubMedCentralCrossRefGoogle Scholar
  3. Achard P, Cheng H, De Grauwe L, Decat J, Schoutteten H, Moritz T, Van Der Straeten D, Peng J, Harberd NP (2006) Integration of plant responses to environmentally activated phytohormonal signals. Science 311:91–94PubMedCrossRefGoogle Scholar
  4. Achard P, Gong F, Cheminant S, Alioua M, Hedden P, Genschik P (2008) The cold-inducible CBF1 factor-dependent signaling pathway modulates the accumulation of the growth-repressing DELLA proteins via its effect on gibberellin metabolism. Plant Cell 20:2117–2129PubMedPubMedCentralCrossRefGoogle Scholar
  5. Alonso JM, Hirayama T, Roman G, Nourizadeh S, Ecker JR (1999) EIN2, a bifunctional transducer of ethylene and stress responses in Arabidopsis. Science 284:2148–2152PubMedCrossRefGoogle Scholar
  6. Balcerowicz M, Hoecker U (2014) Auxin–a novel regulator of stomata differentiation. Trends Plant Sci 19:747–749PubMedCrossRefGoogle Scholar
  7. Balcerowicz M, Ranjan A, Rupprecht L, Fiene G, Hoecker U (2014) Auxin represses stomatal development in dark-grown seedlings via Aux/IAA proteins. Development 141:3165–3176PubMedCrossRefGoogle Scholar
  8. Bao Y, Aggarwal P, Robbins NE 2nd, Sturrock CJ, Thompson MC, Tan HQ, Tham C, Duan L, Rodriguez PL, Vernoux T, Mooney SJ, Bennett MJ, Dinneny JR (2014) Plant roots use a patterning mechanism to position lateral root branches toward available water. Proc Natl Acad Sci USA 111:9319–9324PubMedPubMedCentralCrossRefGoogle Scholar
  9. Barbez E, Kubeš M, Rolčík J, Béziat C, Pěnčík A, Wang B, Rosquete MR, Zhu J, Dobrev PI, Lee Y, Zažímalovà E, Petrášek J, Geisler M, Friml J, Kleine-Vehn J (2012) A novel putative auxin carrier family regulates intracellular auxin homeostasis in plants. Nature 485:119–122PubMedCrossRefGoogle Scholar
  10. Bargmann BO, Estelle M (2014) Auxin perception: in the IAA of the beholder. Physiol Plant 151:52–61PubMedPubMedCentralCrossRefGoogle Scholar
  11. Bargmann BO, Vanneste S, Krouk G, Nawy T, Efroni I, Shani E, Choe G, Friml J, Bergmann DC, Estelle M, Birnbaum KD (2013) A map of cell type-specific auxin responses. Mol Syst Biol 9:688PubMedPubMedCentralCrossRefGoogle Scholar
  12. Bartel B (1997) Auxin biosynthesis. Annu Rev Plant Biol 48:51–66CrossRefGoogle Scholar
  13. Bartel B, Fink GR (1995) ILR1, an amidohydrolase that releases active indole-3-acetic acid from conjugates. Science 268:1745PubMedCrossRefGoogle Scholar
  14. Benjamins R, Scheres B (2008) Auxin: the looping star in plant development. Annu Rev Plant Biol 59:443–465PubMedCrossRefGoogle Scholar
  15. Boer DR, Freire-Rios A, van den Berg WA, Saaki T, Manfield IW, Kepinski S, López-Vidrieo I, Franco-Zorrilla JM, de Vries SC, Solano R, Weijers D, Coll M (2014) Structural basis for DNA binding specificity by the auxin-dependent ARF transcription factors. Cell 156:577–589PubMedCrossRefGoogle Scholar
  16. Bouché N, Bouchez D (2001) Arabidopsis gene knockout: phenotypes wanted. Curr Opin Plant Biol 4:111–117PubMedCrossRefGoogle Scholar
  17. Bradford K, Hsiao T (1982) Physiological responses to moderate water stress. In: Physiological plant ecology II. Springer, Berlin, pp 263–324Google Scholar
  18. Brunoud G, Wells DM, Oliva M, Larrieu A, Mirabet V, Burrow AH, Beeckman T, Kepinski S, Traas J, Bennett MJ, Vernoux T (2012) A novel sensor to map auxin response and distribution at high spatio-temporal resolution. Nature 482:103–106PubMedCrossRefGoogle Scholar
  19. Cha JY, Kim WY, Kang SB, Kim JI, Baek D, Jung IJ, Kim MR, Li N, Kim HJ, Nakajima M, Asami T, Sabir JS, Park HC, Lee SY, Bohnert HJ, Bressan RA, Pardo JM, Yun DJ (2015) A novel thiol-reductase activity of Arabidopsis YUC6 confers drought tolerance independently of auxin biosynthesis. Nat Commun. doi: 10.1038/ncomms9041
  20. Chaves M, Oliveira M (2004) Mechanisms underlying plant resilience to water deficits: prospects for water-saving agriculture. J Exp Bot 55:2365–2384PubMedCrossRefGoogle Scholar
  21. Chen Z, Hu L, Han N, Hu J, Yang Y, Xiang T, Zhang X, Wang L (2014) Overexpression of a miR393-resistant form of transport inhibitor response protein 1 (mTIR1) enhances salt tolerance by increased osmoregulation and Na + exclusion in Arabidopsis thaliana. Plant Cell Physiol 56:73–83PubMedCrossRefGoogle Scholar
  22. Cutler J, Rains D, Loomis R (1977) The importance of cell size in the water relations of plants. Physiol Plant 40:255–260CrossRefGoogle Scholar
  23. Davies WJ, Zhang J (1991) Root signals and the regulation of growth and development of plants in drying soil. Annu Rev Plant Biol 42:55–76CrossRefGoogle Scholar
  24. de Jong M, Leyser O (2012) Developmental plasticity in plants. In: Cold spring harbor symposia on quantitative biology. Cold Spring Harbor Laboratory Press, pp 63–73Google Scholar
  25. Dinneny JR, Long TA, Wang JY, Jung JW, Mace D, Pointer S, Barron C, Brady SM, Schiefelbein J, Benfey PN (2008) Cell identity mediates the response of Arabidopsis roots to abiotic stress. Science 320:942–945PubMedCrossRefGoogle Scholar
  26. Du H, Wu N, Fu J, Wang S, Li X, Xiao J, Xiong L (2012) A GH3 family member, OsGH3-2, modulates auxin and abscisic acid levels and differentially affects drought and cold tolerance in rice. J Exp Bot 63:6467–6480PubMedPubMedCentralCrossRefGoogle Scholar
  27. Du H, Liu H, Xiong L (2013) Endogenous auxin and jasmonic acid levels are differentially modulated by abiotic stresses in rice. Front Plant Sci 4:397PubMedPubMedCentralCrossRefGoogle Scholar
  28. Duan L, Dietrich D, Ng CH, Chan PMY, Bhalerao R, Bennett MJ, Dinneny JR (2013) Endodermal ABA signaling promotes lateral root quiescence during salt stress in Arabidopsis seedlings. Plant Cell 25:324–341PubMedPubMedCentralCrossRefGoogle Scholar
  29. Duan L, Sebastian J, Dinneny JR (2015) Salt-stress regulation of root system growth and architecture in arabidopsis seedlings. In: Plant cell expansion. Springer, pp 105–122Google Scholar
  30. Feng S, Yue R, Tao S, Yang Y, Zhang L, Xu M, Wang H, Shen C (2015) Genome-wide identification, expression analysis of auxin-responsive GH3 family genes in maize (Zea mays L.) under abiotic stresses. J Integr Plant Biol 57:783–795PubMedCrossRefGoogle Scholar
  31. Galvan-Ampudia CS, Testerink C (2011) Salt stress signals shape the plant root. Curr Opin Plant Biol 14:296–302PubMedCrossRefGoogle Scholar
  32. Galvan-Ampudia CS, Julkowska MM, Darwish E, Gandullo J, Korver RA, Brunoud G, Haring MA, Munnik T, Vernoux T, Testerink C (2013) Halotropism is a response of plant roots to avoid a saline environment. Curr Biol 23:2044–2050PubMedCrossRefGoogle Scholar
  33. Gälweiler L, Guan C, Müller A, Wisman E, Mendgen K, Yephremov A, Palme K (1998) Regulation of polar auxin transport by AtPIN1 in Arabidopsis vascular tissue. Science 282:2226–2230PubMedCrossRefGoogle Scholar
  34. Gao Y, Zhao Y (2014) Auxin biosynthesis and catabolism. In: Auxin and its role in plant development. Springer, pp 21–38Google Scholar
  35. Geisler M, Murphy AS (2006) The ABC of auxin transport: the role of p-glycoproteins in plant development. FEBS Lett 580:1094–1102PubMedCrossRefGoogle Scholar
  36. Geng Y, Wu R, Wee CW, Xie F, Wei X, Chan PMY, Tham C, Duan L, Dinneny JR (2013) A spatio-temporal understanding of growth regulation during the salt stress response in Arabidopsis. Plant Cell 25:2132–2154PubMedPubMedCentralCrossRefGoogle Scholar
  37. Guilfoyle TJ (2015) The PB1 domain in auxin response factor and Aux/IAA proteins: a versatile protein interaction module in the auxin response. Plant Cell 27:33–43PubMedPubMedCentralCrossRefGoogle Scholar
  38. Hagen G, Guilfoyle T (1985) Rapid induction of selective transcription by auxins. Mol Cell Biol 5:1197–1203PubMedPubMedCentralCrossRefGoogle Scholar
  39. Hsiao TC, Acevedo E, Fereres E, Henderson D (1976) Water stress, growth, and osmotic adjustment. Philos Trans R Soc B Biol Sci 273:479–500CrossRefGoogle Scholar
  40. Iglesias MJ, Terrile MC, Bartoli CG, D’Ippólito S, Casalongué CA (2010) Auxin signaling participates in the adaptative response against oxidative stress and salinity by interacting with redox metabolism in Arabidopsis. Plant Mol Biol 74:215–222PubMedCrossRefGoogle Scholar
  41. Iglesias MJ, Terrile MC, Windels D, Lombardo MC, Bartoli CG, Vazquez F, Estelle M, Casalongué CA (2014) MiR393 regulation of auxin signaling and redox-related components during acclimation to salinity in Arabidopsis. PLoS ONE 9:e107678PubMedPubMedCentralCrossRefGoogle Scholar
  42. Im Kim J, Baek D, Park HC, Chun HJ, Oh D-H, Lee MK, Cha J-Y, Kim W-Y, Kim MC, Chung WS, Bohnert HJ, Leeb SY, Bressan RA, Leed S-W, Yun D-J (2013) Overexpression of Arabidopsis YUCCA6 in potato results in high-auxin developmental phenotypes and enhanced resistance to water deficit. Mol Plant 6:337–349CrossRefGoogle Scholar
  43. Jacobs M, Rubery PH (1988) Naturally occurring auxin transport regulators. Science 241:346–349PubMedCrossRefGoogle Scholar
  44. Jung H, Lee D-K, Do Choi Y, Kim J-K (2015) OsIAA6, a member of the rice Aux/IAA gene family, is involved in drought tolerance and tiller outgrowth. Plant Sci 236:304–312PubMedCrossRefGoogle Scholar
  45. Ke Q, Wang Z, Ji CY, Jeong JC, Lee H-S, Li H, Xu B, Deng X, Kwak S-S (2015) Transgenic poplar expressing Arabidopsis YUCCA6 exhibits auxin-overproduction phenotypes and increased tolerance to abiotic stress. Plant Physiol Biochem 94:19–27PubMedCrossRefGoogle Scholar
  46. Kinoshita N, Wang H, Kasahara H, Liu J, MacPherson C, Machida Y, Kamiya Y, Hannah MA, Chua N-H (2012) IAA-Ala Resistant3, an evolutionarily conserved target of miR167, mediates Arabidopsis root architecture changes during high osmotic stress. Plant Cell 24:3590–3602PubMedPubMedCentralCrossRefGoogle Scholar
  47. Korasick DA, Westfall CS, Lee SG, Nanao MH, Dumas R, Hagen G, Guilfoyle TJ, Jez JM, Strader LC (2014) Molecular basis for AUXIN RESPONSE FACTOR protein interaction and the control of auxin response repression. Proc Natl Acad Sci 111:5427–5432PubMedPubMedCentralCrossRefGoogle Scholar
  48. Korasick DA, Jez JM, Strader LC (2015) Refining the nuclear auxin response pathway through structural biology. Curr Opin Plant Biol 27:22–28PubMedCrossRefGoogle Scholar
  49. Kramer EM, Bennett MJ (2006) Auxin transport: a field in flux. Trends Plant Sci 11:382–386PubMedCrossRefGoogle Scholar
  50. Le J, Liu XG, Yang KZ, Chen XL, Zou JJ, Wang HZ, Wang M, Vanneste S, Morita M, Tasaka M, Ding ZJ, Friml J, Beeckman T, Sack F (2014) Auxin transport and activity regulate stomatal patterning and development. Nat Commun. doi: 10.1038/ncomms4090
  51. Lee M, Jung J-H, Han D-Y, Seo PJ, Park WJ, Park C-M (2012) Activation of a flavin monooxygenase gene YUCCA7 enhances drought resistance in Arabidopsis. Planta 235:923–938PubMedCrossRefGoogle Scholar
  52. Liu L, Guo G, Wang Z, Ji H, Mu F, Li X (2014) Auxin in plant growth and stress responses. In: Phytohormones: a window to metabolism, signaling and biotechnological applications. Springer, pp 1–35Google Scholar
  53. Liu W, Li R-J, Han T-T, Cai W, Fu Z-W, Lu Y-T (2015) Salt stress reduces root meristem size by nitric oxide-mediated modulation of auxin accumulation and signaling in Arabidopsis. Plant Physiol 168:343–356PubMedPubMedCentralCrossRefGoogle Scholar
  54. Löfke C, Dünser K, Scheuring D, Kleine-Vehn J (2015) Auxin regulates SNARE-dependent vacuolar morphology restricting cell size. Elife 4:e05868PubMedCentralCrossRefGoogle Scholar
  55. Ludwig-Müller J (2011) Auxin conjugates: their role for plant development and in the evolution of land plants. J Exp Bot 62:1757–1773PubMedCrossRefGoogle Scholar
  56. Mashiguchi K, Tanaka K, Sakai T, Sugawara S, Kawaide H, Natsume M, Hanada A, Yaeno T, Shirasu K, Yao H, McSteend P, Zhaoe Y, Hayashif K-I, Kamiyaa Y, Kasahara H (2011) The main auxin biosynthesis pathway in Arabidopsis. Proc Natl Acad Sci 108:18512–18517PubMedPubMedCentralCrossRefGoogle Scholar
  57. Mittler R, Blumwald E (2010) Genetic engineering for modern agriculture: challenges and perspectives. Annu Rev Plant Biol 61:443–462PubMedCrossRefGoogle Scholar
  58. Morgan PW, Drew MC (1997) Ethylene and plant responses to stress. Physiol Plant 100:620–630CrossRefGoogle Scholar
  59. Moubayidin L, Di Mambro R, Sabatini S (2009) Cytokinin–auxin crosstalk. Trends Plant Sci 14:557–562PubMedCrossRefGoogle Scholar
  60. Nakayama N, Smith RS, Mandel T, Robinson S, Kimura S, Boudaoud A, Kuhlemeier C (2012) Mechanical regulation of auxin-mediated growth. Curr Biol 22:1468–1476PubMedCrossRefGoogle Scholar
  61. Nanao MH, Vinos-Poyo T, Brunoud G, Thévenon E, Mazzoleni M, Mast D, Lainé S, Wang S, Hagen G, Li H, Guilfoyle TJ, Parcy F, Vernoux T, Dumas R (2014) Structural basis for oligomerization of auxin transcriptional regulators. Nat Commun. doi: 10.1038/ncomms4617
  62. Nir I, Moshelion M, Weiss D (2014) The Arabidopsis GIBBERELLIN METHYL TRANSFERASE 1 suppresses gibberellin activity, reduces whole-plant transpiration and promotes drought tolerance in transgenic tomato. Plant, Cell Environ 37:113–123CrossRefGoogle Scholar
  63. Park J-E, Park J-Y, Kim Y-S, Staswick PE, Jeon J, Yun J, Kim S-Y, Kim J, Lee Y-H, Park C-M (2007) GH3-mediated auxin homeostasis links growth regulation with stress adaptation response in Arabidopsis. J Biol Chem 282:10036–10046PubMedCrossRefGoogle Scholar
  64. Park J, Kim Y-S, Kim S-G, Jung J-H, Woo J-C, Park C-M (2011) Integration of auxin and salt signals by the NAC transcription factor NTM2 during seed germination in Arabidopsis. Plant Physiol 156:537–549PubMedPubMedCentralCrossRefGoogle Scholar
  65. Peer WA, Blakeslee JJ, Yang H, Murphy AS (2011) Seven things we think we know about auxin transport. Mol Plant 4:487–504PubMedCrossRefGoogle Scholar
  66. Peer WA, Cheng Y, Murphy AS (2013) Evidence of oxidative attenuation of auxin signalling. J Exp Bot 64:2629–2639PubMedCrossRefGoogle Scholar
  67. Peleg Z, Blumwald E (2011) Hormone balance and abiotic stress tolerance in crop plants. Curr Opin Plant Biol 14:290–295PubMedCrossRefGoogle Scholar
  68. Peleg Z, Reguera M, Tumimbang E, Walia H, Blumwald E (2011) Cytokinin-mediated source/sink modifications improve drought tolerance and increase grain yield in rice under water-stress. Plant Biotechnol J 9:747–758PubMedCrossRefGoogle Scholar
  69. Péret B, Li G, Zhao J, Band LR, Voß U, Postaire O, Luu D-T, Da Ines O, Casimiro I, Lucas M, Wells DM, Lazzerini L, Nacry P, King JR, Jensen OE, Schäffner AR, Maurel C, Bennett MJ (2012) Auxin regulates aquaporin function to facilitate lateral root emergence. Nat Cell Biol 14:991–998PubMedCrossRefGoogle Scholar
  70. Petrášek J, Friml J (2009) Auxin transport routes in plant development. Development 136:2675–2688PubMedCrossRefGoogle Scholar
  71. Ranocha P, Dima O, Nagy R, Felten J, Corratgé-Faillie C, Novák O, Morreel K, Lacombe B, Martinez Y, Pfrunder S, Jin X, Renou J-P, Thibaud J-B, Ljung K, Fischer U, Martinoia E, Boerjan W, Goffner D (2013) Arabidopsis WAT1 is a vacuolar auxin transport facilitator required for auxin homoeostasis. Nat Commun. doi: 10.1038/ncomms3625
  72. Rayle DL, Cleland RE (1992) The acid growth theory of auxin-induced cell elongation is alive and well. Plant Physiol 99:1271–1274PubMedPubMedCentralCrossRefGoogle Scholar
  73. Reinhardt D, Pesce E-R, Stieger P, Mandel T, Baltensperger K, Bennett M, Traas J, Friml J, Kuhlemeier C (2003) Regulation of phyllotaxis by polar auxin transport. Nature 426:255–260PubMedCrossRefGoogle Scholar
  74. Robbins NE, Dinneny JR (2015) The divining root: moisture-driven responses of roots at the micro-and macro-scale. J Exp Bot 66:2145–2154PubMedPubMedCentralCrossRefGoogle Scholar
  75. Rosquete MR, Kleine-Vehn J (2013) Halotropism: turning down the salty date. Curr Biol 23:927–929CrossRefGoogle Scholar
  76. Salehin M, Bagchi R, Estelle M (2015) SCFTIR1/AFB-based auxin perception: mechanism and role in plant growth and development. Plant Cell 27:9–19PubMedPubMedCentralCrossRefGoogle Scholar
  77. Schroeder JI, Kwak JM, Allen GJ (2001) Guard cell abscisic acid signalling and engineering drought hardiness in plants. Nature 410:327–330PubMedCrossRefGoogle Scholar
  78. Shi H, Chen L, Ye T, Liu X, Ding K, Chan Z (2014) Modulation of auxin content in Arabidopsis confers improved drought stress resistance. Plant Physiol Biochem 82:209–217PubMedCrossRefGoogle Scholar
  79. Shkolnik D, Krieger G, Nuriel R, Fromm H (2016) Hydrotropism: root bending does not require auxin redistribution. Mol Plant. doi: 10.1016/j.molp.2016.02.001 PubMedGoogle Scholar
  80. Shkolnik-Inbar D, Bar-Zvi D (2010) ABI4 mediates abscisic acid and cytokinin inhibition of lateral root formation by reducing polar auxin transport in Arabidopsis. Plant Cell 22:3560–3573PubMedPubMedCentralCrossRefGoogle Scholar
  81. Skirycz A, Inzé D (2010) More from less: plant growth under limited water. Curr Opin Biotechnol 21:197–203PubMedCrossRefGoogle Scholar
  82. Song Y, Wang L, Xiong L (2009) Comprehensive expression profiling analysis of OsIAA gene family in developmental processes and in response to phytohormone and stress treatments. Planta 229:577–591PubMedCrossRefGoogle Scholar
  83. Staswick PE, Serban B, Rowe M, Tiryaki I, Maldonado MT, Maldonado MC, Suza W (2005) Characterization of an Arabidopsis enzyme family that conjugates amino acids to indole-3-acetic acid. Plant Cell 17:616–627PubMedPubMedCentralCrossRefGoogle Scholar
  84. Stepanova AN, Yun J, Likhacheva AV, Alonso JM (2007) Multilevel interactions between ethylene and auxin in Arabidopsis roots. Plant Cell 19:2169–2185PubMedPubMedCentralCrossRefGoogle Scholar
  85. Stepanova AN, Robertson-Hoyt J, Yun J, Benavente LM, Xie D-Y, Doležal K, Schlereth A, Jürgens G, Alonso JM (2008) TAA1-mediated auxin biosynthesis is essential for hormone crosstalk and plant development. Cell 133:177–191PubMedCrossRefGoogle Scholar
  86. Steudle E, Zimmermann U, Lüttge U (1977) Effect of turgor pressure and cell size on the wall elasticity of plant cells. Plant Physiol 59:285–289PubMedPubMedCentralCrossRefGoogle Scholar
  87. Sun F, Zhang W, Hu H, Li B, Wang Y, Zhao Y, Li K, Liu M, Li X (2008) Salt modulates gravity signaling pathway to regulate growth direction of primary roots in Arabidopsis. Plant Physiol 146:178–188PubMedPubMedCentralCrossRefGoogle Scholar
  88. Swarup R, Friml J, Marchant A, Ljung K, Sandberg G, Palme K, Bennett M (2001) Localization of the auxin permease AUX1 suggests two functionally distinct hormone transport pathways operate in the Arabidopsis root apex. Genes Dev 15:2648–2653PubMedPubMedCentralCrossRefGoogle Scholar
  89. Takeda S, Matsuoka M (2008) Genetic approaches to crop improvement: responding to environmental and population changes. Nat Rev Genet 9:444–457PubMedCrossRefGoogle Scholar
  90. Tao Y, Ferrer J-L, Ljung K, Pojer F, Hong F, Long JA, Li L, Moreno JE, Bowman ME, Ivans LJ, Cheng Y, Lim J, Zhao Y, Ballaré CL, Sandberg G, Noel JP, Chory J (2008) Rapid synthesis of auxin via a new tryptophan-dependent pathway is required for shade avoidance in plants. Cell 133:164–176PubMedPubMedCentralCrossRefGoogle Scholar
  91. Tivendale ND, Ross JJ, Cohen JD (2014) The shifting paradigms of auxin biosynthesis. Trends Plant Sci 19:44–51PubMedCrossRefGoogle Scholar
  92. Ulmasov T, Murfett J, Hagen G, Guilfoyle TJ (1997) Aux/IAA proteins repress expression of reporter genes containing natural and highly active synthetic auxin response elements. Plant Cell 9:1963–1971PubMedPubMedCentralCrossRefGoogle Scholar
  93. Vanderhoef LN, Dute RR (1981) Auxin-regulated wall loosening and sustained growth in elongation. Plant Physiol 67:146–149PubMedPubMedCentralCrossRefGoogle Scholar
  94. Wang R, Estelle M (2014) Diversity and specificity: auxin perception and signaling through the TIR1/AFB pathway. Curr Opin Plant Biol 21:51–58PubMedCrossRefGoogle Scholar
  95. Wang Y, Li K, Li X (2009) Auxin redistribution modulates plastic development of root system architecture under salt stress in Arabidopsis thaliana. J Plant Physiol 166:1637–1645PubMedCrossRefGoogle Scholar
  96. Wang S, Bai Y, Shen C, Wu Y, Zhang S, Jiang D, Guilfoyle TJ, Chen M, Qi Y (2010) Auxin-related gene families in abiotic stress response in Sorghum bicolor. Funct Integr Genomics 10:533–546PubMedCrossRefGoogle Scholar
  97. Wang B, Chu J, Yu T, Xu Q, Sun X, Yuan J, Xiong G, Wang G, Wang Y, Li J (2015) Tryptophan-independent auxin biosynthesis contributes to early embryogenesis in Arabidopsis. Proc Natl Acad Sci 112:4821–4826PubMedPubMedCentralCrossRefGoogle Scholar
  98. Weiss D, Ori N (2007) Mechanisms of cross talk between gibberellin and other hormones. Plant Physiol 144:1240–1246PubMedPubMedCentralCrossRefGoogle Scholar
  99. Went FW, Thimann KV (1937) Phytohormones. MacMillan, New YorkGoogle Scholar
  100. West G, Inzé D, Beemster GT (2004) Cell cycle modulation in the response of the primary root of Arabidopsis to salt stress. Plant Physiol 135:1050–1058PubMedPubMedCentralCrossRefGoogle Scholar
  101. Wiśniewska J, Xu J, Seifertová D, Brewer PB, Růžička K, Blilou I, Rouquié D, Benková E, Scheres B, Friml J (2006) Polar PIN localization directs auxin flow in plants. Science 312:883PubMedCrossRefGoogle Scholar
  102. Won C, Shen X, Mashiguchi K, Zheng Z, Dai X, Cheng Y, Kasahara H, Kamiya Y, Chory J, Zhao Y (2011) Conversion of tryptophan to indole-3-acetic acid by TRYPTOPHAN AMINOTRANSFERASES OF ARABIDOPSIS and YUCCAs in Arabidopsis. Proc Natl Acad Sci 108:18518–18523PubMedPubMedCentralCrossRefGoogle Scholar
  103. Woodward AW, Bartel B (2005) Auxin: regulation, action, and interaction. Ann Bot 95:707–735PubMedPubMedCentralCrossRefGoogle Scholar
  104. Yamada M, Greenham K, Prigge MJ, Jensen PJ, Estelle M (2009) The TRANSPORT INHIBITOR RESPONSE2 gene is required for auxin synthesis and diverse aspects of plant development. Plant Physiol 151:168–179PubMedPubMedCentralCrossRefGoogle Scholar
  105. Zažímalová E, Murphy AS, Yang H, Hoyerová K, Hošek P (2010) Auxin transporters: why so many? Cold Spring Harb Perspect Biol 2:a001552PubMedPubMedCentralCrossRefGoogle Scholar
  106. Zhang S-W, Li C-H, Cao J, Zhang Y-C, Zhang S-Q, Xia Y-F, Sun D-Y, Sun Y (2009) Altered architecture and enhanced drought tolerance in rice via the down-regulation of indole-3-acetic acid by TLD1/OsGH3.13 activation. Plant Physiol 151:1889–1901PubMedPubMedCentralCrossRefGoogle Scholar
  107. Zhang J-Y, He S-B, Li L, Yang H-Q (2014) Auxin inhibits stomatal development through MONOPTEROS repression of a mobile peptide gene STOMAGEN in mesophyll. Proc Natl Acad Sci 111:E3015–E3023PubMedPubMedCentralCrossRefGoogle Scholar
  108. Zhao Y (2012) Auxin biosynthesis: a simple two-step pathway converts tryptophan to indole-3-acetic acid in plants. Mol Plant 5:334–338PubMedCrossRefGoogle Scholar
  109. Zhao Y, Christensen SK, Fankhauser C, Cashman JR, Cohen JD, Weigel D, Chory J (2001) A role for flavin monooxygenase-like enzymes in auxin biosynthesis. Science 291:306–309PubMedCrossRefGoogle Scholar
  110. Zhao Y, Wang T, Zhang W, Li X (2011) SOS3 mediates lateral root development under low salt stress through regulation of auxin redistribution and maxima in Arabidopsis. New Phytol 189:1122–1134PubMedCrossRefGoogle Scholar
  111. Zhu J-K (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53:247PubMedPubMedCentralCrossRefGoogle Scholar
  112. Zolla G, Heimer YM, Barak S (2009) Mild salinity stimulates a stress-induced morphogenic response in Arabidopsis thaliana roots. J Exp Bot 61:211–224PubMedCentralCrossRefGoogle Scholar
  113. Zwack PJ, Rashotte AM (2015) Interactions between cytokinin signalling and abiotic stress responses. J Exp Bot 66:4863–4871PubMedCrossRefGoogle Scholar
  114. Zwiewka M, Nodzyński T, Robert S, Vanneste S, Friml J (2015) Osmotic stress modulates the balance between exocytosis and clathrin-mediated endocytosis in Arabidopsis thaliana. Mol Plant 8:1175–1187PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Department of Molecular Biology and Ecology of PlantsTel Aviv UniversityTel AvivIsrael

Personalised recommendations