Skip to main content
Log in

Hormones and nitrate: a two-way connection

  • Review
  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

During their sessile mode of life, plants need to endure variations in their environment such as a drastic variability in the nutrient concentration in soil solution. It is almost trivial to say that such fluctuations in the soil modify plant growth, development and phase transitions. However, the signaling pathways underlying the connections between nitrogen related signaling and hormonal signaling controlling growth are still poorly documented. This review is meant to present how nitrate/nitrogen controls hormonal pathways. Furthermore, it is very interesting to highlight the increasing evidence that the hormonal signaling pathways themselves seem to feed back control of the nitrate/nitrogen transport and assimilation to adapt nutrition to growth. This thus defines a feed-forward cycle that finely coordinates plant growth and nutrition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Adamowski M, Friml J (2015) PIN-dependent auxin transport: action, regulation, and evolution. Plant Cell 27:20–32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alboresi A, Gestin C, Leydecker MT et al (2005) Nitrate, a signal relieving seed dormancy in Arabidopsis. Plant Cell Environ 28:500–512

    Article  CAS  PubMed  Google Scholar 

  • Avery GS, Pottorf L (1945) Auxin and nitrogen relationships in green plants. Am J Bot 32:666–669

    Article  CAS  Google Scholar 

  • Avery GS, Burkholder PR, Creighton HB (1937) Nutrient deficiencies and growth hormone concentration in Helianthus and Nicotiana. Am J Bot 24:553–557

    Article  CAS  Google Scholar 

  • Barbez E, Kubes M, Rolcik J et al (2012) A novel putative auxin carrier family regulates intracellular auxin homeostasis in plants. Nature 485:119–122

    Article  CAS  PubMed  Google Scholar 

  • Bougyon E, Brun F, Meynard M et al (2015) Multiple mechanisms of nitrate sensing by Arabidopsis nitrate transceptor NRT1.1. Nature Plants 1:15015

  • Boursiac Y, Leran S, Corratge-Faillie C et al (2013) ABA transport and transporters. Trends Plant Sci 18:325–333

    Article  CAS  PubMed  Google Scholar 

  • Britto DT, Siddiqi MY, Glass AD et al (2001) Futile transmembrane NH4 + cycling: a cellular hypothesis to explain ammonium toxicity in plants. Proc Natl Acad Sci USA 98:4255–4258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caba JM, Centeno ML, Fernandez B et al (2000) Inoculation and nitrate alter phytohormone levels in soybean roots: differences between a supernodulating mutant and the wild type. Planta 211:98–104

    Article  CAS  PubMed  Google Scholar 

  • Chen JG, Cheng SH, Cao W et al (1998) Involvement of endogenous plant hormones in the effect of mixed nitrogen source on growth and tillering of wheat. J Plant Nutr 21:87–97

    Article  CAS  Google Scholar 

  • Crawford NM, Glass ADM (1998) Molecular and physiological aspects of nitrate uptake in plants. Trends Plant Sci 3:389–395

    Article  Google Scholar 

  • De Smet I, Signora L, Beeckman T et al (2003) An abscisic acid-sensitive checkpoint in lateral root development of Arabidopsis. Plant J 33:543–555

    Article  PubMed  Google Scholar 

  • Dharmasiri N, Dharmasiri S, Estelle M (2005) The F-box protein TIR1 is an auxin receptor. Nature 435:441–445

    Article  CAS  PubMed  Google Scholar 

  • Dharmasiri S, Swarup R, Mockaitis K et al (2006) AXR4 is required for localization of the auxin influx facilitator AUX1. Science 312:1218–1220

    Article  CAS  PubMed  Google Scholar 

  • Ding Z, De Smet I (2013) Localised ABA signalling mediates root growth plasticity. Trends Plant Sci 18:533–535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Drew MC (1975) Comparison of the effects of a localized supply of phosphate, nitrate, ammonium and potassium on the growth of the seminal root system, and the shoot, in barley. New Phytol 75:479–490

    Article  CAS  Google Scholar 

  • Findenegg GR (1987) A comparative study of ammonium toxicity at different constant pH of the nutrient solution. Plant Soil 103:239–244

    Article  CAS  Google Scholar 

  • Fujii H, Chinnusamy V, Rodrigues A et al (2009) In vitro reconstitution of an abscisic acid signalling pathway. Nature 462:660–664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gifford ML, Dean A, Gutierrez RA et al (2008) Cell-specific nitrogen responses mediate developmental plasticity. Proc Natl Acad Sci USA 105:803–808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gojon A, Krouk G, Perrine-Walker F et al (2011) Nitrate transceptor(s) in plants. J Exp Bot 62:2299–2308

    Article  CAS  PubMed  Google Scholar 

  • Guo Y, Chen F, Zhang F et al (2005) Auxin transport from shoot to root is involved in the response of lateral root growth to localized supply of nitrate in maize. Plant Sci 169:894–900

    Article  CAS  Google Scholar 

  • Gutierrez RA, Lejay LV, Dean A et al (2007) Qualitative network models and genome-wide expression data define carbon/nitrogen-responsive molecular machines in Arabidopsis. Genome Biol 8:R7

    Article  PubMed  PubMed Central  Google Scholar 

  • Ho CH, Lin SH, Hu HC et al (2009) CHL1 functions as a nitrate sensor in plants. Cell 138:1184–1194

    Article  CAS  PubMed  Google Scholar 

  • Hu HC, Wang YY, Tsay YF (2009) AtCIPK8, a CBL-interacting protein kinase, regulates the low-affinity phase of the primary nitrate response. Plant J 57:264–278

    Article  CAS  PubMed  Google Scholar 

  • Huang NC, Liu KH, Lo HJ et al (1999) Cloning and functional characterization of an Arabidopsis nitrate transporter gene that encodes a constitutive component of low-affinity uptake. Plant Cell 11:1381–1392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaillais Y, Fobis-Loisy I, Miege C et al (2006) AtSNX1 defines an endosome for auxin-carrier trafficking in Arabidopsis. Nature 443:106–109

    Article  CAS  PubMed  Google Scholar 

  • Joshi-Saha A, Valon C, Leung J (2011) A brand new START: abscisic acid perception and transduction in the guard cell. Sci Signal 4:re4

    Article  PubMed  Google Scholar 

  • Kanno Y, Hanada A, Chiba Y et al (2012) Identification of an abscisic acid transporter by functional screening using the receptor complex as a sensor. Proc Natl Acad Sci USA 109:9653–9658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanno Y, Kamiya Y, Seo M (2013) Nitrate does not compete with abscisic acid as a substrate of AtNPF4.6/NRT1.2/AIT1 in Arabidopsis. Plant Signal Behav 8:e26624

    Article  PubMed  PubMed Central  Google Scholar 

  • Kieber JJ, Schaller GE (2014) Cytokinins. Arabidopsis Book 12:e0168

    Article  PubMed  PubMed Central  Google Scholar 

  • Kronzucker HJ, Britto DT, Davenport RJ et al (2001) Ammonium toxicity and the real cost of transport. Trends Plant Sci 6:335–337

    Article  CAS  PubMed  Google Scholar 

  • Krouk G, Lacombe B, Bielach A et al (2010) Nitrate-regulated auxin transport by NRT1.1 defines a mechanism for nutrient sensing in plants. Dev Cell 18:927–937

    Article  CAS  PubMed  Google Scholar 

  • Krouk G, Ruffel S, Gutierrez RA et al (2011) A framework integrating plant growth with hormones and nutrients. Trends Plant Sci 16:178–182

    Article  CAS  PubMed  Google Scholar 

  • Krouk G, Carre C, Fizames C et al (2015) GeneCloud reveals semantic enrichment in lists of gene descriptions. Mol Plant 8:971–973

    Article  CAS  PubMed  Google Scholar 

  • Leran S, Varala K, Boyer JC et al (2014) A unified nomenclature of NITRATE TRANSPORTER 1/PEPTIDE TRANSPORTER family members in plants. Trends Plant Sci 19:5–9

    Article  CAS  PubMed  Google Scholar 

  • Leran S, Edel KH, Pervent M et al (2015) Nitrate sensing and uptake in Arabidopsis are enhanced by ABI2, a phosphatase inactivated by the stress hormone abscisic acid. Sci Signal 8:ra43

    Article  PubMed  Google Scholar 

  • Li Y, Krouk G, Coruzzi GM et al (2014) Finding a nitrogen niche: a systems integration of local and systemic nitrogen signalling in plants. J Exp Bot 65:5601–5610

  • Liu KH, Tsay YF (2003) Switching between the two action modes of the dual-affinity nitrate transporter CHL1 by phosphorylation. EMBO J 22:1005–1013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu J, An X, Cheng L et al (2010) Auxin transport in maize roots in response to localized nitrate supply. Ann Bot 106:1019–1026

  • Ma W, Li J, Qu B et al (2014) Auxin biosynthetic gene TAR2 is involved in low nitrogen-mediated reprogramming of root architecture in Arabidopsis. Plant J 78:70–79

    Article  CAS  PubMed  Google Scholar 

  • Marin IC, Loef I, Bartetzko L et al (2010) Nitrate regulates floral induction in Arabidopsis, acting independently of light, gibberellin and autonomous pathways. Planta 233:539–552

  • Matakiadis T, Alboresi A, Jikumaru Y et al (2009) The Arabidopsis abscisic acid catabolic gene CYP707A2 plays a key role in nitrate control of seed dormancy. Plant Physiol 149:949–960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Medici A, Krouk G (2014) The primary nitrate response: a multifaceted signalling pathway. J Exp Bot 65:5567–5576

    Article  PubMed  Google Scholar 

  • Muller D, Waldie T, Miyawaki K et al (2015) Cytokinin is required for escape but not release from auxin mediated apical dominance. Plant J 82:874–886

    Article  PubMed  PubMed Central  Google Scholar 

  • Okamoto M, Kuwahara A, Seo M et al (2006) CYP707A1 and CYP707A2, which encode abscisic acid 8′-hydroxylases, are indispensable for proper control of seed dormancy and germination in Arabidopsis. Plant Physiol 141:97–107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ondzighi-Assoume CA, Chakraborty S, Harris JM (2016) Environmental nitrate stimulates abscisic acid accumulation in arabidopsis root tips by releasing It from inactive stores. Plant Cell

  • Park SY, Fung P, Nishimura N et al (2009) Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins. Science 324:1068–1071

    CAS  PubMed  PubMed Central  Google Scholar 

  • Parker JL, Newstead S (2014) Molecular basis of nitrate uptake by the plant nitrate transporter NRT1.1. Nature 507:68–72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parry G, Calderon-Villalobos LI, Prigge M et al (2009) Complex regulation of the TIR1/AFB family of auxin receptors. Proc Natl Acad Sci USA 106:22540–22545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patterson K, Walters L, Cooper A et al (2015) Nitrate-regulated glutaredoxins control Arabidopsis thaliana primary root growth. Plant Physiol 170:989–999

  • Petrasek J, Friml J (2009) Auxin transport routes in plant development. Development 136:2675–2688

    Article  CAS  PubMed  Google Scholar 

  • Rahayu YS, Walch-Liu P, Neumann G et al (2005) Root-derived cytokinins as long-distance signals for NO3 induced stimulation of leaf growth. J Exp Bot 56:1143–1152

    Article  CAS  PubMed  Google Scholar 

  • Remans T, Nacry P, Pervent M et al (2006) The Arabidopsis NRT1.1 transporter participates in the signaling pathway triggering root colonization of nitrate-rich patches. Proc Natl Acad Sci USA 103:19206–19211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruffel S, Krouk G, Ristova D et al (2011) Nitrogen economics of root foraging: transitive closure of the nitrate-cytokinin relay and distinct systemic signaling for N supply vs. demand. Proc Natl Acad Sci USA 108:18524–18529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruffel S, Poitout A, Krouk G et al (2015) Long-distance nitrate signaling displays cytokinin dependent and independent branches. J Integr Plant Biol. doi:10.1111/jipb.12453

  • Sakakibara H, Suzuki M, Takei K et al (1998) A response-regulator homologue possibly involved in nitrogen signal transduction mediated by cytokinin in maize. Plant J 14:337–344

    Article  CAS  PubMed  Google Scholar 

  • Sakakibara H, Takei K, Hirose N (2006) Interactions between nitrogen and cytokinin in the regulation of metabolism and development. Trends Plant Sci 11:440–448

    Article  CAS  PubMed  Google Scholar 

  • Seo M, Koshiba T (2002) Complex regulation of ABA biosynthesis in plants. Trends Plant Sci 7:41–48

    Article  CAS  PubMed  Google Scholar 

  • Signora L, De Smet I, Foyer CH et al (2001) ABA plays a central role in mediating the regulatory effects of nitrate on root branching in Arabidopsis. Plant J 28:655–662

    Article  CAS  PubMed  Google Scholar 

  • Sun J, Bankston JR, Payandeh J et al (2014) Crystal structure of the plant dual-affinity nitrate transporter NRT1.1. Nature 507:73–77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takei K, Sakakibara H, Taniguchi M et al (2001) Nitrogen-dependent accumulation of cytokinins in root and the translocation to leaf: implication of cytokinin species that induces gene expression of maize response regulator. Plant Cell Physiol 42:85–93

    Article  CAS  PubMed  Google Scholar 

  • Takei K, Takahashi T, Sugiyama T et al (2002) Multiple routes communicating nitrogen availability from roots to shoots: a signal transduction pathway mediated by cytokinin. J Exp Bot 53:971–977

    Article  CAS  PubMed  Google Scholar 

  • Takei K, Ueda N, Aoki K et al (2004) AtIPT3 is a key determinant of nitrate-dependent cytokinin biosynthesis in Arabidopsis. Plant Cell Physiol 45:1053–1062

    Article  CAS  PubMed  Google Scholar 

  • Tamaki V, Mercier H (2007) Cytokinins and auxin communicate nitrogen availability as long-distance signal molecules in pineapple (Ananas comosus). J Plant Physiol 164:1543–1547

    Article  CAS  PubMed  Google Scholar 

  • Tian Q, Chen F, Liu J et al (2008) Inhibition of maize root growth by high nitrate supply is correlated with reduced IAA levels in roots. J Plant Physiol 165:942–951

    Article  CAS  PubMed  Google Scholar 

  • Tian QY, Sun P, Zhang WH (2009) Ethylene is involved in nitrate-dependent root growth and branching in Arabidopsis thaliana. New Phytol 184:918–931

    Article  CAS  PubMed  Google Scholar 

  • Tsay YF, Schroeder JI, Feldmann KA et al (1993) The herbicide sensitivity gene CHL1 of Arabidopsis encodes a nitrate-inducible nitrate transporter. Cell 72:705–713

    Article  CAS  PubMed  Google Scholar 

  • Vega A, Canessa P, Hoppe G et al (2015) Transcriptome analysis reveals regulatory networks underlying differential susceptibility to Botrytis cinerea in response to nitrogen availability in Solanum lycopersicum. Front Plant Sci 6:911

    Article  PubMed  PubMed Central  Google Scholar 

  • Vidal EA, Araus V, Lu C et al (2010) Nitrate-responsive miR393/AFB3 regulatory module controls root system architecture in Arabidopsis thaliana. Proc Natl Acad Sci USA 107:4477–4482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vidal EA, Moyano TC, Riveras E et al (2013) Systems approaches map regulatory networks downstream of the auxin receptor AFB3 in the nitrate response of Arabidopsis thaliana roots. Proc Natl Acad Sci USA 110:12840–12845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vidal EA, Moyano TC, Canales J et al (2014) Nitrogen control of developmental phase transitions in Arabidopsis thaliana. J Exp Bot 65:5611–5618

    Article  PubMed  Google Scholar 

  • Vuylsteker C, Huss B, Rambour S (1997a) Nitrate reductase activity in chicory roots following excision. J Exp Bot 48:59–65

    Article  CAS  Google Scholar 

  • Vuylsteker C, Leleu O, Rambour S (1997b) Influence of BAP and NAA on the expression of nitrate reductase in excised chicory roots. J Exp Bot 48:1079–1085

    Article  CAS  Google Scholar 

  • Walch-Liu P, Neumann G, Bangerth F et al (2000) Rapid effects of nitrogen form on leaf morphogenesis in tobacco. J Exp Bot 51:227–237

    Article  CAS  PubMed  Google Scholar 

  • Walch-Liu P, Ivanov II, Filleur S et al (2006) Nitrogen regulation of root branching. Ann Bot (Lond) 97:875–881

    Article  CAS  Google Scholar 

  • Wang R, Tischner R, Gutierrez RA et al (2004) Genomic analysis of the nitrate response using a nitrate reductase-null mutant of Arabidopsis. Plant Physiol 136:2512–2522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Werner T, Schmulling T (2009) Cytokinin action in plant development. Curr Opin Plant Biol 12:527–538

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Hammes UZ, Taylor CG et al (2006) High-affinity auxin transport by the AUX1 influx carrier protein. Curr Biol 16:1123–1127

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Forde BG (1998) An Arabidopsis MADS box gene that controls nutrient-induced changes in root architecture. Science 279:407–409

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Forde BG (2000) Regulation of Arabidopsis root development by nitrate availability. J Exp Bot 51:51–59

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Jennings A, Barlow PW et al (1999) Dual pathways for regulation of root branching by nitrate. Proc Natl Acad Sci USA 96:6529–6534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao Y (2012) Auxin biosynthesis: a simple two-step pathway converts tryptophan to indole-3-acetic acid in plants. Mol Plant 5:334–338

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

I thank Sandrine Ruffel and Benoit Lacombe for helpful comments and corrections on the manuscript. This work was supported by the Centre National de la Recherche Scientifique.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriel Krouk.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krouk, G. Hormones and nitrate: a two-way connection. Plant Mol Biol 91, 599–606 (2016). https://doi.org/10.1007/s11103-016-0463-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-016-0463-x

Keywords

Navigation