Skip to main content
Log in

Chemotaxis signaling systems in model beneficial plant–bacteria associations

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Beneficial plant–microbe associations play critical roles in plant health. Bacterial chemotaxis provides a competitive advantage to motile flagellated bacteria in colonization of plant root surfaces, which is a prerequisite for the establishment of beneficial associations. Chemotaxis signaling enables motile soil bacteria to sense and respond to gradients of chemical compounds released by plant roots. This process allows bacteria to actively swim towards plant roots and is thus critical for competitive root surface colonization. The complete genome sequences of several plant-associated bacterial species indicate the presence of multiple chemotaxis systems and a large number of chemoreceptors. Further, most soil bacteria are motile and capable of chemotaxis, and chemotaxis-encoding genes are enriched in the bacteria found in the rhizosphere compared to the bulk soil. This review compares the architecture and diversity of chemotaxis signaling systems in model beneficial plant-associated bacteria and discusses their relevance to the rhizosphere lifestyle. While it is unclear how controlling chemotaxis via multiple parallel chemotaxis systems provides a competitive advantage to certain bacterial species, the presence of a larger number of chemoreceptors is likely to contribute to the ability of motile bacteria to survive in the soil and to compete for root surface colonization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alexandre G, Greer SE, Zhulin IB (2000) Energy taxis is the dominant behavior in Azospirillum brasilense. J Bacteriol 182:6042–6048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ames P, Bergman K (1981) Competitive advantage provided by bacterial motility in the formation of nodules by Rhizobium meliloti. J Bacteriol 148:728–908

    CAS  PubMed  PubMed Central  Google Scholar 

  • Armitage JP, Gallagher A, Johnston AW (1988) Comparison of the chemotactic behaviour of Rhizobium leguminosarum with and without the nodulation plasmid. Mol Microbiol 2:743–748

    Article  CAS  PubMed  Google Scholar 

  • Attmannspacher U, Scharf B, Schmitt R (2005) Control of speed modulation (chemokinesis) in the unidirectional rotary motor of Sinorhizobium meliloti. Mol Microbiol 56:708–718

    Article  CAS  PubMed  Google Scholar 

  • Badri DV, Weir TL, van der Lelie D, Vivanco JM (2009) Rhizosphere chemical dialogues: plant–microbe interactions. Curr Opin Biotechnol 20:642–650

    Article  CAS  PubMed  Google Scholar 

  • Bahlawane C, McIntosh M, Krol E, Becker A (2008) Sinorhizobium meliloti regulator MucR couples exopolysaccharide synthesis and motility. Mol Plant Microbe Interact 21:1498–1509

    Article  CAS  PubMed  Google Scholar 

  • Bais HP, Park SW, Weir TL, Callaway RM, Vivanco JM (2004) How plants communicate using the underground information superhighway. Trends Plant Sci 9:26–32

    Article  CAS  PubMed  Google Scholar 

  • Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Ann Rev Plant Biol 57:233–266

    Article  CAS  Google Scholar 

  • Barbour WM, Hattermann DR, Stacey G (1991) Chemotaxis of Bradyrhizobium japonicum to soybean exudates. Appl Env Microbiol 57:2635–2639

    CAS  Google Scholar 

  • Barnett MJ et al (2001) Nucleotide sequence and predicted functions of the entire Sinorhizobium meliloti pSymA megaplasmid. Proc Natl Acad Sci USA 98:9883–9888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bauer WD, Caetano-Anollés G (1990) Chemotaxis, induced gene expression and competitiveness in the rhizosphere. Plant Soil 129:45–52

    Article  CAS  Google Scholar 

  • Becker A et al (2004) Global changes in gene expression in Sinorhizobium meliloti 1021 under microoxic and symbiotic conditions. Molec Plant-Microbe Interact 17:292–303

    Article  CAS  Google Scholar 

  • Berendsen RL, Pieterse CM, Bakker PA (2012) The rhizosphere microbiome and plant health. Trends Plant Sci 17:478–486

    Article  CAS  PubMed  Google Scholar 

  • Berleman JE, Bauer CE (2005) Involvement of a Che-like signal transduction cascade in regulating cyst cell development in Rhodospirillum centenum. Mol Microbiol 56:1457–1466

    Article  CAS  PubMed  Google Scholar 

  • Bible AN, Stephens BB, Ortega DR, Xie Z, Alexandre G (2008) Function of a chemotaxis-like signal transduction pathway in modulating motility, cell clumping, and cell length in the alphaproteobacterium Azospirillum brasilense. J Bacteriol 190:6365–6375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bible A, Russell MH, Alexandre G (2012) The Azospirillum brasilense Che1 chemotaxis pathway controls swimming velocity, which affects transient cell-to-cell clumping. J Bacteriol 194:3343–3355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bowra BJ, Dilworth MJ (1981) Motility and chemotaxis towards sugars in Rhizobium leguminosarum. J Gen Microbiol 126:231–235

    CAS  Google Scholar 

  • Bringhurst RM, Gage DJ (2002) Control of inducer accumulation plays a key role in succinate-mediated catabolite repression in Sinorhizobium meliloti. J Bacteriol 184:5385–5392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buchan A, Crombie B, Alexandre GM (2010) Temporal dynamics and genetic diversity of chemotactic-competent microbial populations in the rhizosphere. Environ Microbiol 12:3171–3184

    Article  CAS  PubMed  Google Scholar 

  • Burg D, Guillaume J, Tailliez R (1982) Chemotaxis by Rhizobium meliloti. Arch Microbiol 133:162–163

    Article  CAS  Google Scholar 

  • Caetano-Anollés G, Crist-Estes DK, Bauer WD (1988a) Chemotaxis of Rhizobium meliloti to the plant flavone luteolin requires functional nodulation genes. J Bacteriol 170:3164–3169

    PubMed  PubMed Central  Google Scholar 

  • Caetano-Anollés G, Wall LG, De Micheli AT, Macchi EM, Bauer WD, Favelukes G (1988b) Role of motility and chemotaxis in efficiency of nodulation by Rhizobium meliloti. Plant Physiol 86:1228–1235

    Article  PubMed  PubMed Central  Google Scholar 

  • Caetano-Anollés G, Wrobel-Boerner E, Bauer WD (1992) Growth and movement of spot inoculated Rhizobium meliloti on the root surface of alfalfa. Plant Physiol 98:1181–1189

    Article  PubMed  PubMed Central  Google Scholar 

  • Capela D, Filipe C, Bobik C, Batut J, Bruand C (2006) Sinorhizobium meliloti differentiation during symbiosis with alfalfa: a transcriptomic dissection. Molec Plant-Microbe Interact 19:363–372

    Article  CAS  Google Scholar 

  • Charoenpanich P, Meyer S, Becker A, McIntosh M (2013) Temporal expression program of quorum sensing-based transcription regulation in Sinorhizobium meliloti. J Bacteriol 195:3224–3236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dennis PG, Miller AJ, Hirsch PR (2010) Are root exudates more important than other sources of rhizodeposits in structuring rhizosphere bacterial communities? FEMS Microbiol Ecol 72:313–327

    Article  CAS  PubMed  Google Scholar 

  • Dharmatilake AJ, Bauer WD (1992) Chemotaxis of Rhizobium meliloti towards nodulation gene-inducing compounds from alfalfa roots. Appl Environ Microbiol 58:1153–1158

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dogra G et al (2012) Sinorhizobium meliloti CheA complexed with CheS exhibits enhanced binding to CheY1, resulting in accelerated CheY1 dephosphorylation. J Bacteriol 194:1075–1087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galibert F et al (2001) The composite genome of the legume symbiont Sinorhizobium meliloti. Science 293:668–672

    Article  CAS  PubMed  Google Scholar 

  • Gibson KE, Barnett MJ, Toman CJ, Long SR, Walker GC (2007) The symbiosis regulator CbrA modulates a complex regulatory network affecting the flagellar apparatus and cell envelope proteins. J Bacteriol 189:3591–3602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Götz R, Limmer N, Ober K, Schmitt R (1982) Motility and chemotaxis in two strains of Rhizobium with complex flagella. J General Microbiol 128:789–798

    Google Scholar 

  • Greer-Phillips SE, Stephens BB, Alexandre G (2004) An energy taxis transducer promotes root colonization by Azospirillum brasilense. J Bacteriol 186:6595–6604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gulash M, Ames P, Larosiliere RC, Bergman K (1984) Rhizobia are attracted to localized sites on legume roots. Appl Environ Microbiol 48:149–152

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hauwaerts D, Alexandre G, Das SK, Vanderleyden J, Zhulin IB (2002) A major chemotaxis gene cluster in Azospirillum brasilense and relationships between chemotaxis operons in α-proteobacteria. FEMS Microbiol Lett 208:61–67

    CAS  PubMed  Google Scholar 

  • Hazelbauer GL (2012) Bacterial chemotaxis: the early years of molecular studies. Ann Rev Microbiol 66:285–303. doi:10.1146/annurev-micro-092611-150120

    Article  CAS  Google Scholar 

  • Hazelbauer GL, Lai WC (2010) Bacterial chemoreceptors: providing enhanced features to two-component signaling. Curr Opin Microbiol 13:124–132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hazelbauer GL, Falke JJ, Parkinson JS (2008) Bacterial chemoreceptors: high-performance signaling in networked arrays. Trends Biochem Sci 33:9–19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heinrich D, Hess D (1985) Chemotactic attraction of Azospirillum lipoferum by wheat roots and characterization of some attractants. Can J Microbiol 31:26–31

    Article  CAS  Google Scholar 

  • Hoang HH, Gurich N, González JE (2008) Regulation of motility by the ExpR/Sin quorum-sensing system in Sinorhizobium meliloti. J Bacteriol 190:861–871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Janczarek M (2011) Environmental signals and regulatory pathways that influence exopolysaccharide production in rhizobia. Int J Molec Sci 12:7898–7933

    Article  CAS  Google Scholar 

  • Karunakaran R et al (2009) Transcriptomic analysis of Rhizobium leguminosarum biovar viciae in symbiosis with host plants Pisum sativum and Vicia cracca. J Bacteriol 191:4002–4014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kirby JR, Zusman DR (2003) Chemosensory regulation of developmental gene expression in Myxococcus xanthus. Proc Natl Acad Sci USA 100:2008–2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kristich CJ, Ordal GW (2002) Bacillus subtilis CheD is a chemoreceptor modification enzyme required for chemotaxis. J Biol Chem 277:25356–25362

    Article  CAS  PubMed  Google Scholar 

  • Lakshmanan V, Selvaraj G, Bais HP (2014) Functional soil microbiome: belowground solutions to an aboveground problem. Plant Physiol 166:689–700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mandal SM, Chakraborty D, Dey S (2010) Phenolic acids act as signaling molecules in plant–microbe symbioses. Plant Signal Behav 5:359–368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mandimba G, Heulin T, Bally R, Guckert A, Balandreau J (1986) Chemotaxis of free-living nitrogen-fixing bacteria towards maize mucilage. Plant Soil 90:129–139

    Article  Google Scholar 

  • McDougall BM, Rovira AD (1970) Sites of exudation of 14C-labelled compounds from wheat roots. New Phytol 69:999–1003

    Article  Google Scholar 

  • McIntosh M, Krol E, Becker A (2008) Competitive and cooperative effects in quorum-sensing-regulated galactoglucan biosynthesis in Sinorhizobium meliloti. J Bacteriol 190:5308–5317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McIntosh M, Meyer S, Becker A (2009) Novel Sinorhizobium meliloti quorum sensing positive and negative regulatory feedback mechanisms respond to phosphate availability. Mol Microbiol 74:1238–1256

    Article  CAS  PubMed  Google Scholar 

  • Meier VM, Scharf BE (2009) Cellular localization of predicted transmembrane and soluble chemoreceptors in Sinorhizobium meliloti. J Bacteriol 191:5724–5733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meier VM, Muschler P, Scharf BE (2007) Functional analysis of nine putative chemoreceptor proteins in Sinorhizobium meliloti. J Bacteriol 189:1816–1826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller LD, Yost CK, Hynes MF, Alexandre G (2007) The major chemotaxis gene cluster of Rhizobium leguminosarum bv. viciae is essential for competitive nodulation. Molec Microbiol 63:348–362

    Article  CAS  Google Scholar 

  • Moens S, Michiels K, Keijers V, Van Leuven F, Vanderleyden J (1995) Cloning, sequencing, and phenotypic analysis of laf1, encoding the flagellin of the lateral flagella of Azospirillum brasilense Sp7. J Bacteriol 177:5419–5426

    CAS  PubMed  PubMed Central  Google Scholar 

  • Moens S, Schloter M, Vanderleyden J (1996) Expression of the structural gene, laf1, encoding the flagellin of the lateral flagella in Azospirillum brasilense Sp7. J Bacteriol 178:5017–5019

    CAS  PubMed  PubMed Central  Google Scholar 

  • Morris J, González JE (2009) The novel genes emmABC are associated with exopolysaccharide production, motility, stress adaptation, and symbiosis in Sinorhizobium meliloti. J Bacteriol 191:5890–5900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mukherjee A, Ghosh S (1987) Regulation of fructose uptake and catabolism by succinate in Azospirillum brasilense. J Bacteriol 169:4361–4367

    CAS  PubMed  PubMed Central  Google Scholar 

  • Neumann S, Grosse K, Sourjik V (2012) Chemotactic signaling via carbohydrate phosphotransferase systems in Escherichia coli. Proc Natl Acad Sci USA 109:12159–12164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parkinson JS, Hazelbauer GL, Falke JJ (2015) Signaling and sensory adaptation in Escherichia coli chemoreceptors: 2015 update. Trends Microbiol 23:257–266

    Article  CAS  PubMed  Google Scholar 

  • Platzer J, Sterr W, Hausmann M, Schmitt R (1997) Three genes of a motility operon and their role in flagellar rotary speed variation in Rhizobium meliloti. J Bacteriol 179:6391–6399

    CAS  PubMed  PubMed Central  Google Scholar 

  • Poole PS, Blyth A, Reid CJ, Walters K (1994) myo-Inositol catabolism and catabolite regulation in Rhizobium leguminosarum bv. viciae. Microbiology 140:2787–2795

    Article  CAS  Google Scholar 

  • Reinhold B, Hurek T, Fendrik I (1985) Strain-specific chemotaxis of Azospirillum spp. J Bacteriol 162:190–195

    CAS  PubMed  PubMed Central  Google Scholar 

  • Robinson JB, Bauer WD (1993) Relationships between C4 dicarboxylic acid transport and chemotaxis in Rhizobium meliloti. J Bacteriol 175:2284–2291

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rosario MM, Kirby JR, Bochar DA, Ordal GW (1995) Chemotactic methylation and behavior in Bacillus subtilis: role of two unique proteins, CheC and CheD. Biochemistry 34:3823–3831

    Article  CAS  PubMed  Google Scholar 

  • Rotter C, Mühlbacher S, Salamon D, Schmitt R, Scharf B (2006) Rem, a new transcriptional activator of motility and chemotaxis in Sinorhizobium meliloti. J Bacteriol 188:6932–6942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sadasivan L, Neyra CA (1985) Flocculation in Azospirillum brasilense and Azospirillum lipoferum: exopolysaccharides and cyst formation. J Bacteriol 163:716–723

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sampedro I, Parales RE, Krell T, Hill JE (2015) Pseudomonas chemotaxis. FEMS Microbiol Rev 39:17–46

    PubMed  Google Scholar 

  • Scharf B (2002) Real-time imaging of fluorescent flagellar filaments of Rhizobium lupini H13-3: flagellar rotation and pH-induced polymorphic transitions. J Bacteriol 184:5979–5986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siuti P, Green C, Edwards AN, Doktycz MJ, Alexandre G (2011) The chemotaxis-like Che1 pathway has an indirect role in adhesive cell properties of Azospirillum brasilense. FEMS Microbiol Lett 323:105–112

    Article  CAS  PubMed  Google Scholar 

  • Sourjik V, Schmitt R (1996) Different roles of CheY1 and CheY2 in the chemotaxis of Rhizobium meliloti. Mol Microbiol 22:427–436

    Article  CAS  PubMed  Google Scholar 

  • Sourjik V, Schmitt R (1998) Phosphotransfer between CheA, CheY1, and CheY2 in the chemotaxis signal transduction chain of Rhizobium meliloti. Biochemistry 37:2327–2335

    Article  CAS  PubMed  Google Scholar 

  • Sourjik V, Sterr W, Platzer J, Bos I, Haslbeck M, Schmitt R (1998) Mapping of 41 chemotaxis, flagellar and motility genes to a single region of the Sinorhizobium meliloti chromosome. Gene 223:283–290

    Article  CAS  PubMed  Google Scholar 

  • Sourjik V, Muschler P, Scharf B, Schmitt R (2000) VisN and VisR are global regulators of chemotaxis, flagellar, and motility genes in Sinorhizobium (Rhizobium) meliloti. J Bacteriol 182:782–788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steenhoudt O, Vanderleyden J (2000) Azospirillum, a free-living nitrogen-fixing bacterium closely associated with grasses: genetic, biochemical and ecological aspects. FEMS Microbiol Rev 24:487–506

    Article  CAS  PubMed  Google Scholar 

  • Tambalo DD, Del Bel KL, Bustard DE, Greenwood PR, Steedman AE, Hynes MF (2010) Regulation of flagellar, motility and chemotaxis genes in Rhizobium leguminosarum by the VisN/R-Rem cascade. Microbiology 156:1673–1685

    Article  CAS  PubMed  Google Scholar 

  • Ulrich LE, Zhulin IB (2009) The MiST2 database: a comprehensive genomics resource on microbial signal transduction. Nucleic Acids Res 38:D401–407

    Article  PubMed  PubMed Central  Google Scholar 

  • Uren NC (2000) Types, amounts and possible functions of compounds released into the rhizosphere by soil-grown plants. In: Pinton R, Varanini Z, Nannipiero P (eds) The rhizosphere: Biochemistry and organic substances at the soil–plant interface. Marcel Dekker, New York, pp 19–20

    Google Scholar 

  • Van Bastelaere E, Lambrecht M, Vermeiren H, Van Dommelen A, Keijers V, Proost P, Vanderleyden J (1999) Characterization of a sugar-binding protein from Azospirillum brasilense mediating chemotaxis to and uptake of sugars. Molec Microbiol 32:703–714

    Article  Google Scholar 

  • Vande Broek A, Lambrecht M, Vanderleyden J (1998) Bacterial chemotactic motility is important for the initiation of wheat root colonization by Azospirillum brasilense. Microbiology 144:2599–2606

    Article  CAS  PubMed  Google Scholar 

  • Wadhams GH, Armitage JP (2004) Making sense of it all: bacterial chemotaxis. Nature Rev Mol Cell Biol 5:1024–1037

    Article  CAS  Google Scholar 

  • Walker TS, Bais HP, Grotewold E, Vivanco JM (2003) Root exudation and rhizosphere biology. Plant Physiol 132:44–51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Webb BA, Hildreth S, Helm RF, Scharf BE (2014) Sinorhizobium meliloti Chemoreceptor McpU mediates chemotaxis toward host plant exudates through direct proline sensing. Appl Environ Microbiol 80:3404–3415

    Article  PubMed  PubMed Central  Google Scholar 

  • Wisniewski-Dyé F et al (2011) Azospirillum genomes reveal transition of bacteria from aquatic to terrestrial environments. PLoS Genet 7:e1002430

    Article  PubMed  PubMed Central  Google Scholar 

  • Wuichet K, Zhulin IB (2010) Origins and diversification of a complex signal transduction system in prokaryotes. Sci Signal 3:ra50. doi:10.1126/scisignal.2000724

    Article  PubMed  PubMed Central  Google Scholar 

  • Xie Z, Ulrich LE, Zhulin IB, Alexandre G (2010) PAS domain containing chemoreceptor couples dynamic changes in metabolism with chemotaxis. Proc Natl Acad Sci USA 107:2235–2240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yao SY et al (2004) Sinorhizobium meliloti ExoR and ExoS proteins regulate both succinoglycan and flagellum production. J Bacteriol 186:6042–6049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yost CK, Rochepeau P, Hynes MF (1998) Rhizobium leguminosarum contains a group of genes that appear to code for methyl-accepting chemotaxis proteins. Microbiology 144:1945–1956

    Article  CAS  PubMed  Google Scholar 

  • Yost CK, Clark KT, Del Bel KL, Hynes MF (2003) Characterization of the nodulation plasmid encoded chemoreceptor gene mcpG from Rhizobium leguminosarum. BMC Microbiol 3:1

    Article  PubMed  PubMed Central  Google Scholar 

  • Yost CK, Del Bel KL, Quandt J, Hynes MF (2004) Rhizobium leguminosarum methyl-accepting chemotaxis protein genes are down-regulated in the pea nodule. Arch Microbiol 182:505–513

    Article  CAS  PubMed  Google Scholar 

  • Young JPW et al (2006) The genome of Rhizobium leguminosarum has recognizable core and accessory components. Genome Biol 7:R34. doi:10.1186/gb-2006-7-4-r34

    Article  PubMed  PubMed Central  Google Scholar 

  • Zatakia HM, Nelson CE, Syed UJ, Scharf BE (2014) ExpR coordinates the expression of symbiotically important, bundle-forming Flp pili with quorum sensing in Sinorhizobium meliloti. Appl Environ Microbiol 80:2429–2439

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Research in our laboratories is funded by NSF-330344 (GMA), NSF-1253234 (BES) and NSERC Canada RGPIN 2015-03926 (MFH). Any opinion, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

Author’s contribution

BES, MFH and GMA wrote and revised the manuscript and designed the figures and tables.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gladys M. Alexandre.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Scharf, B.E., Hynes, M.F. & Alexandre, G.M. Chemotaxis signaling systems in model beneficial plant–bacteria associations. Plant Mol Biol 90, 549–559 (2016). https://doi.org/10.1007/s11103-016-0432-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-016-0432-4

Keywords

Navigation