A genome-scale integrated approach aids in genetic dissection of complex flowering time trait in chickpea

Abstract

A combinatorial approach of candidate gene-based association analysis and genome-wide association study (GWAS) integrated with QTL mapping, differential gene expression profiling and molecular haplotyping was deployed in the present study for quantitative dissection of complex flowering time trait in chickpea. Candidate gene-based association mapping in a flowering time association panel (92 diverse desi and kabuli accessions) was performed by employing the genotyping information of 5724 SNPs discovered from 82 known flowering chickpea gene orthologs of Arabidopsis and legumes as well as 832 gene-encoding transcripts that are differentially expressed during flower development in chickpea. GWAS using both genome-wide GBS- and candidate gene-based genotyping data of 30,129 SNPs in a structured population of 92 sequenced accessions (with 200–250 kb LD decay) detected eight maximum effect genomic SNP loci (genes) associated (34 % combined PVE) with flowering time. Six flowering time-associated major genomic loci harbouring five robust QTLs mapped on a high-resolution intra-specific genetic linkage map were validated (11.6–27.3 % PVE at 5.4–11.7 LOD) further by traditional QTL mapping. The flower-specific expression, including differential up- and down-regulation (>three folds) of eight flowering time-associated genes (including six genes validated by QTL mapping) especially in early flowering than late flowering contrasting chickpea accessions/mapping individuals during flower development was evident. The gene haplotype-based LD mapping discovered diverse novel natural allelic variants and haplotypes in eight genes with high trait association potential (41 % combined PVE) for flowering time differentiation in cultivated and wild chickpea. Taken together, eight potential known/candidate flowering time-regulating genes [efl1 (early flowering 1), FLD (Flowering locus D), GI (GIGANTEA), Myb (Myeloblastosis), SFH3 (SEC14-like 3), bZIP (basic-leucine zipper), bHLH (basic helix-loop-helix) and SBP (SQUAMOSA promoter binding protein)], including novel markers, QTLs, alleles and haplotypes delineated by aforesaid genome-wide integrated approach have potential for marker-assisted genetic improvement and unravelling the domestication pattern of flowering time in chickpea.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Abbo S, Berger J, Turner NC (2003) Evolution of cultivated chickpea: four bottlenecks limit diversity and constrain adaptation. Funct Plant Biol 30:1081–1087

    Article  Google Scholar 

  2. Abbo S, Pinhasi van-Oss R, Gopher A, Saranga Y, Ofner I, Peleg Z (2014) Plant domestication versus crop evolution: a conceptual framework for cereals and grain legumes. Trends Plant Sci 19:351–360

    CAS  PubMed  Article  Google Scholar 

  3. Abe M, Kobayashi Y, Yamamoto S, Daimon Y, Yamaguchi A, Ikeda Y, Ichinoki H, Notaguchi M, Goto K, Araki T (2005) FD, a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex. Science 309:1052–1056

    CAS  PubMed  Article  Google Scholar 

  4. Agarwal G, Jhanwar S, Priya P, Singh VK, Saxena MS, Parida SK, Garg R, Tyagi AK, Jain M (2012) Comparative analysis of kabuli chickpea transcriptome with desi and wild chickpea provides a rich resource for development of functional markers. PLoS ONE 7:e52443

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  5. Anbessa Y, Warkentin T, Vandenberg A, Ball R (2006) Inheritance of time to flowering in chickpea in a short-season temperate environments. J Hered 97:55–61

    CAS  PubMed  Article  Google Scholar 

  6. Andres F, Coupland G (2012) The genetic basis of flowering responses to seasonal cues. Nat Rev Genet 13:627–639

    CAS  PubMed  Article  Google Scholar 

  7. Aryamanesh N, Nelson MN, Yan G, Clarke HJ, Siddique KHM (2010) Mapping a major gene for growth habit and QTLs for Ascochyta blight resistance and flowering time in a population between chickpea and Cicer reticulatum. Euphytica 173:307–319

    Article  Google Scholar 

  8. Bajaj D, Upadhyaya HD, Khan Y, Das S, Badoni S, Shree T, Kumar V, Tripathi S, Gowda CLL, Singh S, Sharma S, Tyagi AK, Chattopdhyay D, Parida SK (2015a) A combinatorial approach of comprehensive QTL-based comparative genome mapping and transcript profiling identified a seed weight-regulating candidate gene in chickpea. Sci Rep 5:9264

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  9. Bajaj D, Saxena MS, Kujur A, Das S, Badoni S, Tripathi S, Upadhyaya HD, Gowda CLL, Sharma S, Singh S, Tyagi AK, Parida SK (2015b) Genome-wide conserved non-coding microsatellite (CNMS) marker-based integrative genetical genomics for quantitative dissection of seed weight in chickpea. J Exp Bot 66:1271–1290

    PubMed Central  PubMed  Article  CAS  Google Scholar 

  10. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc B 57:289–300

    Google Scholar 

  11. Berger JD, Abbo S, Turner NC (2003) Ecogeography of annual wild Cicer species: the poor state of the world collection. Crop Sci 43:1076–1090

    Article  Google Scholar 

  12. Berger JD, Buck R, Henzell JM, Turner NC (2005) Evolution in the genus Cicer vernalisation response and low temperature pod set in chickpea (C. arietinum L.) and its annual wild relatives. Aust J Agric Res 56:1191–1200

    Article  Google Scholar 

  13. Brachi B, Faure N, Horton M, Flahauw E, Vazquez A, Nordborg M, Bergelson J, Cuguen J, Roux F (2010) Linkage and association mapping of Arabidopsis thaliana flowering time in nature. PLoS Genet 6:e1000940

    PubMed Central  PubMed  Article  CAS  Google Scholar 

  14. Burger JC, Champan MA, Burke JM (2008) Molecular insights into the evolution of crop plants. Am J Bot 95:113–122

    PubMed  Article  Google Scholar 

  15. Cardon GH, Hohmann S, Nettesheim K, Saedler H, Huijser P (1997) Functional analysis of the Arabidopsis thaliana SBP-box gene SPL3: a novel gene involved in the floral transition. Plant J 12:367–377

    CAS  PubMed  Article  Google Scholar 

  16. Cho SH, Kumar J, Shultz JL, Anupama K, Tefera F, Muehlbauer FJ (2002) Mapping genes for double podding and other morphological traits in chickpea. Euphytica 128:285–292

    CAS  Article  Google Scholar 

  17. Cho SH, Coruh C, Axtell MJ (2012) miR156 and miR390 regulate tasiRNA accumulation and developmental timing in Physcomitrella patens. Plant Cell 24:4837–4849

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  18. Cobos MJ, Rubio J, Fernández-Romero MD, Garza R, Moreno MT, Millán T, Gil J (2007) Genetic analysis of seed size, yield and days to flowering in a chickpea recombinant inbred line population derived from a kabuli x desi cross. Ann Appl Biol 151:33–42

    CAS  Article  Google Scholar 

  19. Cobos MJ, Winter P, Kharrat M, Cubero JI, Gil J, Milian T, Rubio J (2009) Genetic analysis of agronomic traits in a wide cross of chickpea. Field Crops Res 111:130–136

    Article  Google Scholar 

  20. Deokar AA, Ramsay L, Sharpe AG, Diapari M, Sindhu A, Bett K, Warkentin TD, Tar’an B (2014) Genome-wide SNP identification in chickpea for use in development of a high density genetic map and improvement of chickpea reference genome assembly. BMC Genomics 15:708

    PubMed Central  PubMed  Article  CAS  Google Scholar 

  21. Dubos C, Stracke R, Grotewold E, Weisshaar B, Martin C, Lepiniec L (2010) MYB transcription factors in Arabidopsis. Trends Plant Sci 15:573–581

    CAS  PubMed  Article  Google Scholar 

  22. Ehrenreich IM, Hanzawa Y, Chou L, Roe JL, Kover PX, Purugganan MD (2009) Candidate gene association mapping of Arabidopsis flowering time. Genetics 183:325–335

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  23. Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchell SE (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE 6:e19379

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  24. Gaur R, Azam S, Jeena G, Khan AW, Choudhary S, Jain M, Yadav G, Tyagi AK, Chattopadhyay D, Bhatia S (2012) High-throughput SNP discovery and genotyping for constructing a saturated linkage map of chickpea (Cicer arietinum L.). DNA Res 19:357–373

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  25. Gaur PM, Samineni S, Tripathi S, Varshney RK, Gowda CLL (2014) Allelic relationships of flowering time genes in chickpea. Euphytica 203:295–308

    Article  CAS  Google Scholar 

  26. Gowda SJM, Radzika P, Mhase LB, Jamadagni BM, Gupta VS, Kadro NY (2011) Mapping of QTLs governing agronomic and field traits in chickpea. J Appl Genet 52:9–21

    CAS  PubMed  Article  Google Scholar 

  27. Guo AY, Zhu QH, Gu X, Ge S, Yang J, Luo J (2008) Genome-wide identification and evolutionary analysis of the plant specific SBP-box transcription factor family. Gene 418:1–8

    CAS  PubMed  Article  Google Scholar 

  28. Hecht V, Knowles CL, Schoor JKV, Liew LC, Jones SE, Lambert MJM, Weller JL (2007) Pea LATE BLOOMER1 is a GIGANTEA ortholog with roles in photoperiodic flowering, deetiolation and transcriptional regulation of circadian clock gene homologs. Plant Physiol 144:648–661

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  29. Hegde VS (2010) Genetics of flowering time in chickpea in a semi-arid environment. Plant Breed 129:683–687

    CAS  Article  Google Scholar 

  30. Hiremath PJ, Kumar A, Penmetsa RV, Farmer A, Schlueter JA, Chamarthi SK, Whaley AM, Carrasquilla-Garcia N, Gaur PM, Upadhyaya HD, Kavi Kishor PB, Shah TM, Cook DR, Varshney RK (2012) Large-scale development of cost-effective SNP marker assays for diversity assessment and genetic mapping in chickpea and comparative mapping in legumes. Plant Biotechnol J 10:716–732

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  31. Hossain S, Ford R, McNeil DL, Pittock C, Pannozzo JF (2010) Development of a selection tool for seed shape and QTL analysis of seed shape with other morphological traits for selective breeding in chickpea (Cicer arietinum L.). Aust J Crop Sci 4:278–288

    Google Scholar 

  32. Hu JY, Zhou Y, He F, Dong X, Liu LY, Coupland G, Turck F, de Meaux J (2014) miR824-regulated AGAMOUS-LIKE16 contributes to flowering time repression in Arabidopsis. Plant Cell 26:2024–2037

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  33. Ito S, Song YH, Josephson-Day AR, Miller RJ, Breton G, Olmstead RG, Imaizumi T (2012) FLOWERING BHLH transcriptional activators control expression of the photoperiodic flowering regulator CONSTANS in Arabidopsis. Proc Natl Acad Sci USA 109:3582–3587

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  34. Jaganathan D, Thudi M, Kale S, Azam S, Roorkiwal M, Gaur PM, Kishor PB, Nguyen H, Sutton T, Varshney RK (2015) Genotyping-by-sequencing based intra-specific genetic map refines a ‘‘QTL-hotspot” region for drought tolerance in chickpea. Mol Genet Genomics 290:559–571

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  35. Jain M, Misra G, Patel RK, Priya P, Jhanwar S, Khan AW, Shah N, Singh VK, Garg R, Jeena G, Yadav M, Kant C, Sharma P, Yadav G, Bhatia S, Tyagi AK, Chattopadhyay D (2013) A draft genome sequence of the pulse crop chickpea (Cicer arietinum L.). Plant J 74:715–729

    CAS  PubMed  Article  Google Scholar 

  36. Jamalabadi JG, Saidi A, Karami E, Kharkesh M, Talebi R (2013) Molecular mapping and characterization of genes governing time to flowering, seed weight and plant height in an intra-specific genetic linkage map of chickpea (Cicer arietinum). Biochem Genet 51:387–397

    CAS  PubMed  Article  Google Scholar 

  37. Jhanwar S, Priya P, Garg R, Parida SK, Tyagi AK, Jain M (2012) Transcriptome sequencing of wild chickpea as a rich resource for marker development. Plant Biotechnol J 10:690–702

    CAS  PubMed  Article  Google Scholar 

  38. Jung C, Müller AE (2009) Flowering time control and applications in plant breeding. Trends Plant Sci 14:563–573

    CAS  PubMed  Article  Google Scholar 

  39. Jung CH, Wong CE, Singh MB, Bhalla PL (2012) Comparative genomic analysis of soybean flowering genes. PLoS ONE 7:e38250

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  40. Kashiwagi J, Krishnamurthy L, Gaur PM, Upadhyaya HD, Varshney RK, Tobita S (2013) Traits of relevance to improve yield under terminal drought stress in chickpea (C. arietinum L.). Field Crops Res 145:88–95

    Article  Google Scholar 

  41. Kawamoto N, Sasabe M, Endo M, Machida Y, Araki T (2015) Calcium-dependent protein kinases responsible for the phosphorylation of a bZIP transcription factor FD crucial for the florigen complex formation. Sci Rep 5:8341

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  42. Kim MY, Shin JH, Kang YJ, Shim SR, Lee SH (2012) Divergence of flowering genes in soybean. J Biosci 37:857–870

    CAS  PubMed  Article  Google Scholar 

  43. Kong F, Liu B, Xia Z, Sato S, Kim BM, Watanabe S, Yamada T, Tabata S, Kanazawa A, Harada K, Abe J (2010) Two coordinately regulated homologs of FLOWERING LOCUS T are involved in the control of photoperiodic flowering in soybean. Plant Physiol 154:1220–1231

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  44. Kujur A, Bajaj D, Saxena MS, Tripathi S, Upadhyaya HD, Gowda CLL, Singh S, Jain M, Tyagi AK, Parida SK (2013) Functionally relevant microsatellite markers from chickpea transcription factor genes for efficient genotyping applications and trait association mapping. DNA Res 20:355–374

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  45. Kujur A, Bajaj D, Saxena MS, Tripathi S, Upadhyaya HD, Gowda CLL, Singh S, Jain M, Tyagi AK, Parida SK (2014) An efficient and cost-effective approach for genic microsatellite marker-based large-scale trait association mapping: identification of candidate genes for seed weight in chickpea. Mol Breed 34:241–265

    CAS  Article  Google Scholar 

  46. Kujur A, Bajaj D, Upadhyaya HD, Das S, Ranjan R, Shree T, Saxena MS, Badoni S, Kumar V, Tripathi S, Gowda CLL, Sharma S, Singh S, Tyagi AK, Parida SK (2015) Employing genome-wide SNP discovery and genotyping strategy to extrapolate the natural allelic diversity and domestication patterns in chickpea. Front Plant Sci 6:162

    PubMed Central  PubMed  Article  Google Scholar 

  47. Kumar J, Abbo S (2001) Genetics of flowering time in chickpea and its bearing on productivity in semiarid environments. Adv Agron 72:107–138

    CAS  Article  Google Scholar 

  48. Kumar J, Van Rheenen HA (2000) A major gene for time of flowering in chickpea. J Hered 91:67–68

    CAS  PubMed  Article  Google Scholar 

  49. Kumar J, Sethi SC, Johansen C, Kelly TG, Rehman MM, van Rheenen HA (1996) Potential of short-duration chickpea varieties. J Dryland Agri Res Dev 11:28–32

    Google Scholar 

  50. Kumar J, Choudhary AK, Solanki RK, Pratap A (2011) Towards marker-assisted selection in pulses: a review. Plant Breed 130:297–313

    CAS  Article  Google Scholar 

  51. Kumar SV, Lucyshyn D, Jaeger KE, Alos E, Alvey E, Harberd NP, Wigge PA (2012) Transcription factor PIF4 controls the thermosensory activation of flowering. Nature 484:242–245

    CAS  PubMed  Article  Google Scholar 

  52. Kumar V, Singh A, Amitha Mithra SV, Krishnamurthy SL, Parida SK, Jain S, Tiwari KK, Kumar P, Rao AR, Sharma SK, Khurana JP, Singh NK, Mohapatra T (2015) Genome-wide association mapping of salinity tolerance in rice (Oryza sativa). DNA Res 22:133–145

    PubMed Central  PubMed  Article  Google Scholar 

  53. Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  54. Laurie RE, Diwadkar P, Jaudal M, Zhang L, Hecht V, Wen J, Tadege M, Mysore KS, Putterill J, Weller JL, Macknight RC (2011) The Medicago truncatula Flowering Locus T homolog, MtFTa1, is a key regulator of flowering time. Plant Physiol 156:2207–2224

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  55. Li C, Dubcovsky J (2008) Wheat FT protein regulates VRN1 transcription through interactions with FDL2. Plant J 55:543–554

    CAS  PubMed  Article  Google Scholar 

  56. Lichtenzveig J, Bonfil DJ, Zhang HB, Shtienberg D, Abbo S (2006) Mapping quantitative trait loci in chickpea associated with time to flowering and resistance to Didymella rabiei the causal agent of Ascochyta blight. Theor Appl Genet 113:1357–1369

    PubMed  Article  Google Scholar 

  57. Lipka AE, Tian F, Wang Q, Peiffer J, Li M, Bradbury PJ, Gore MA, Buckler ES, Zhang Z (2012) GAPIT: genome association and prediction integrated tool. Bioinformatics 28:2397–2399

  58. Liu F, Quesada V, Crevillen P, Bäurle I, Swiezewski S, Dean C (2007) The Arabidopsis RNA-binding protein FCA requires a lysine-specific demethylase 1 homolog to downregulate FLC. Mol Cell 28:398–407

    PubMed  Article  CAS  Google Scholar 

  59. Liu B, Kanazawa A, Matsumura H, Takahashi R, Harada K, Abe J (2008) Genetic redundancy in soybean photoresponses associated with duplication of the phytochrome A gene. Genetics 180:995–1007

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  60. Liu Y, Li X, Li K, Liu H, Lin C (2013) Multiple bHLH proteins form heterodimers to mediate CRY2-dependent regulation of flowering-time in Arabidopsis. PLoS Genet 9:e1003861

    PubMed Central  PubMed  Article  CAS  Google Scholar 

  61. Meyer RS, DuVal AE, Jensen HR (2012) Patterns and processes in crop domestication: an historical review and quantitative analysis of 203 global food crops. New Phytol 196:29–48

    PubMed  Article  Google Scholar 

  62. Mo P, Zhu Y, Liu X, Zhang A, Yan C, Wang D (2007) Identification of two phosphatidylinositol/phosphatidylcholine transfer protein genes that are predominately transcribed in the flowers of Arabidopsis thaliana. J Plant Physiol 164:478–486

    CAS  PubMed  Article  Google Scholar 

  63. Nan H, Cao D, Zhang D, Li Y, Lu S, Tang L, Yuan X, Liu B, Kong F (2014) GmFT2a and GmFT5a redundantly and differentially regulate flowering through interaction with and upregulation of the bZIP transcription factor GmFDL19 in soybean. PLoS ONE 9:e97669

    PubMed Central  PubMed  Article  CAS  Google Scholar 

  64. Or E, Hovav R, Abbo S (1999) A major gene for flowering time in chickpea. Crop Sci 39:315–322

    Google Scholar 

  65. Pierre JB, Huguet T, Barre P, Huyghe C, Julier B (2008) Detection of QTLs for flowering date in three mapping populations of the model legume species Medicago truncatula. Theor Appl Genet 117:609–620

    CAS  PubMed  Article  Google Scholar 

  66. Pierre JB, Bogard M, Herrmann D, Huyghe C, Julier B (2011) A CONSTANS-like gene candidate that could explain most of the genetic variation for flowering date in Medicago truncatula. Mol Breed 28:25–35

    Article  Google Scholar 

  67. Pin PA, Nilsson O (2012) The multifaceted roles of FLOWERING LOCUS T in plant development. Plant Cell Environ 35:1742–1755

    CAS  PubMed  Article  Google Scholar 

  68. Radhika P, Gowda SJM, Kadoo NY, Mhase LB, Jamadagni BM, Sainani MN, Chandra S, Gupta VS (2007) Development of an integrated intraspecific map of chickpea (Cicer arietinum L.) using two recombinant inbred line populations. Theor Appl Genet 115:209–216

    CAS  PubMed  Article  Google Scholar 

  69. Rehman AU, Malhotra RS, Bett K, Tar’an B, Bueckert R, Warkentin TD (2011) Mapping QTL associated with traits affecting grain yield in chickpea (Cicer arietinum L.) under terminal drought stress. Crop Sci 51:450–463

    Article  Google Scholar 

  70. Roorkiwal M, Sawargaonkar SL, Chitikineni A, Thudi M, Saxena RK, Upadhyaya HD, Vales MI, Riera-Lizarazu O, Varshney RK (2013) Single nucleotide polymorphism genotyping for breeding and genetics applications in chickpea and pigeonpea using the BeadXpress platform. Plant Genome 6:1–10

    CAS  Article  Google Scholar 

  71. Saxena MS, Bajaj D, Kujur A, Das S, Badoni S, Kumar V, Singh M, Bansal KC, Tyagi AK, Parida SK (2014a) Natural allelic diversity, genetic structure and linkage disequilibrium pattern in wild chickpea. PLoS ONE 9:e107484

    PubMed Central  PubMed  Article  CAS  Google Scholar 

  72. Saxena MS, Bajaj D, Das S, Kujur A, Kumar V, Singh M, Bansal KC, Tyagi AK, Parida SK (2014b) An integrated genomic approach for rapid delineation of candidate genes regulating agro-morphological traits in chickpea. DNA Res 21:695–710

    PubMed Central  PubMed  Article  Google Scholar 

  73. Searle I, He YH, Turck F, Vincent C, Fornara F, Krober S, Amasino RA, Coupland G (2006) The transcription factor FLC confers a flowering response to vernalization by repressing meristem competence and systemic signaling in Arabidopsis. Genes Dev 20:898–912

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  74. Singh VK, Garg R, Jain M (2013) A global view of transcriptome dynamics during flower development in chickpea by deep sequencing. Plant Biotechnol J 11:691–701

    CAS  PubMed  Article  Google Scholar 

  75. Song YH, Ito S, Imaizumi T (2013) Flowering time regulation: photoperiod- and temperature-sensing in leaves. Trends Plant Sci 18:575–583

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  76. Stanton-Geddes J, Paape T, Epstein B, Briskine R, Yoder J, Mudge J, Bharti AK, Farmer AD, Zhou P, Denny R, May GD, Erlandson S, Yakub M, Sugawara M, Sadowsky MJ, Young ND, Tiffin P (2013) Candidate genes and genetic architecture of symbiotic and agronomic traits revealed by whole-genome, sequence-based association genetics in Medicago truncatula. PLoS ONE 8:e65688

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  77. Stephens A, Lombardi M, Cogan NOI, Forster JW, Hobson K, Materne M, Kaur S (2014) Genetic marker discovery, intraspecific linkage map construction and quantitative trait locus analysis of Ascochyta blight resistance in chickpea (Cicer arietinum L.). Mol Breed 33:297–313

    CAS  Article  Google Scholar 

  78. Subbarao GV, Johansen C, Slinkard AE, Rao RCN, Saxena NP, Chauhan YS (1995) Strategies for improving drought resistance in grain legumes. Crit Rev Plant Sci 14:469–523

    Article  Google Scholar 

  79. Summerfield RJ, Ellis RH, Roberts EH (1989) Vernalization in chickpea (Cicer arietinum); Fact or artefact? Annal Bot 64:599–604

    Google Scholar 

  80. Sussmilch F, Berbel A, Hecht V, Schoor JKV, Ferrandiz C, Madueño F, Weller JL (2015) Pea VEGETATIVE2 is an FD homolog that is essential for flowering and compound inflorescence development. Plant Cell 27:1046–1060

    Article  CAS  Google Scholar 

  81. Thudi M, Bohra A, Nayak SN, Varghese N, Shah TM, Penmetsa RV, Thirunavukkarasu N, Gudipati S, Gaur PM, Kulwal PL, Upadhyaya HD, Kavi kishor PB, Winter P, Kahl G, Town CD, Kilian A, Cook DR, Varshney RK (2011) Novel SSR markers from BAC-end sequences, DArT arrays and a comprehensive genetic map with 1,291 marker loci for chickpea (Cicer arietinum L.). PLoS ONE 6:e27275

  82. Thudi M, Upadhyaya HD, Rathore A, Gaur PM, Krishnamurthy L, Roorkiwal M, Nayak SN, Chaturvedi SK, Basu PS, Gangarao NV, Fikre A, Kimurto P, Sharma PC, Sheshashayee MS, Tobita S, Kashiwagi J, Ito O, Killian A, Varshney RK (2014) Genetic dissection of drought and heat tolerance in chickpea through genome-wide and candidate gene-based association mapping approaches. PLoS ONE 9:e96758

    PubMed Central  PubMed  Article  CAS  Google Scholar 

  83. Toker C (2009) A note on the evolution of kabuli chickpeas as shown by induced mutations in Cicer reticulatum Ladizinsky. Genet Resour Crop Evol 56:7–12

    Article  Google Scholar 

  84. Turner NC, Abbo S, Berger JD, Chaturvedi SK, French RJ, Ludwig C, Mannur DM, Singh SJ, Yadava HS (2007) Osmotic adjustment in chickpea (Cicer arietinum L.) results in no yield benefit under terminal drought. J Exp Bot 58:187–194

    CAS  PubMed  Article  Google Scholar 

  85. Udvardi MK, Kakar K, Wandrey M, Montanari O, Murray J, Andriankaja A, Zhang JY, Benedito V, Hofer JMI, Chueng F, Town CD (2007) Legume transcription factors: global regulators of plant development and response to the environment. Plant Physiol 144:538–549

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  86. Upadhyaya HD, Bramel PJ, Singh S (2001) Development of a chickpea core subset using geographic distribution and quantitative traits. Crop Sci 41:206–210

    Article  Google Scholar 

  87. Upadhyaya HD, Dwivedi SL, Baum M, Varshney RK, Udupa SM, Gowda CLL, Hoisington D, Singh S (2008) Genetic structure, diversity and allelic richness in composite collection and reference set in chickpea (Cicer arietinum L.). BMC Plant Biol 8:106

    PubMed Central  PubMed  Article  CAS  Google Scholar 

  88. Vadez V, Krishnamurthy L, Thudi M, Anuradha C, Colmer TD, Turner NC, Siddique KHM, Gaur PM, Varshney RK (2012) Assessment of ICCV2 x JG62 chickpea progenies shows sensitivity of reproduction to salt stress and reveals QTL for seed yield and yield components. Mol Breed 30:9–21

    Article  Google Scholar 

  89. Varshney RK, Song C, Saxena RK et al (2013) Draft genome sequence of chickpea (Cicer arietinum) provides a resource for trait improvement. Nat Biotechnol 31:240–246

    CAS  PubMed  Article  Google Scholar 

  90. Varshney R, Thudi M, Nayak S, Gaur P, Kashiwagi J, Krishnamurthy L, Jaganathan D, Koppolu J, Bohra A, Tripathi S, Rathore A, Jukanti A, Jayalakshmi V, Vemula A, Singh SJ, Yasin M, Sheshshayee MS, Viswanatha KP (2014) Genetic dissection of drought tolerance in chickpea (Cicer arietinum L.). Theor Appl Genet 127:445–462

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  91. Wang JW, Czech B, Weigel D (2009) miR156-regulated SPL transcription factors define an endogenous flowering pathway in Arabidopsis thaliana. Cell 138:738–749

    CAS  PubMed  Article  Google Scholar 

  92. Wang H, You C, Chang F, Wang Y, Wang L, Qi J, Ma H (2014) Alternative splicing during Arabidopsis flower development results in constitutive and stage-regulated isoforms. Front Genet 5:25

    PubMed Central  PubMed  Google Scholar 

  93. Watanabe S, Hideshima R, Xia Z, Tsubokura Y, Sato S, Nakamoto Y, Yamanaka N, Takahashi R, Ishimoto M, Anai T, Tabata S, Harada K (2009) Map-based cloning of the gene associated with the soybean maturity locus E3. Genetics 182:1251–1262

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  94. Watanabe S, Xia Z, Hideshima R, Tsubokura Y, Sato S, Yamanaka N, Takahashi R, Anai T, Tabata S, Kitamura K, Harada K (2011) A map-based cloning strategy employing a residual heterozygous line reveals that the GIGANTEA gene is involved in soybean maturity and flowering. Genetics 188:395–407

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  95. Watanabe S, Harada K, Abe J (2012) Genetic and molecular bases of photoperiod responses of flowering in soybean. Breed Sci 61:531–543

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  96. Weller JL, Martínez RO (2015) Genetic control of flowering time in legumes. Front Plant Sci 6:207

    PubMed Central  PubMed  Article  Google Scholar 

  97. Weller JL, Hecht V, Liew LC, Sussmilch FC, Wenden B, Knowles CL, Schoor JKV (2009) Update on the genetic control of flowering in garden pea. J Exp Bot 60:2493–2499

    CAS  PubMed  Article  Google Scholar 

  98. Wigge PA, Kim MC, Jaeger KE, Busch W, Schmid M, Lohmann JU, Weigel D (2005) Integration of spatial and temporal information during floral induction in Arabidopsis. Science 309:1056–1059

    CAS  PubMed  Article  Google Scholar 

  99. Winter P, Pfaff T, Udupa SM, Hüttel B, Sharma PC, Sahi S, Arreguin-Espinoza R, Weigand F, Muehlbauer FJ, Kahl G (1999) Characterization and mapping of sequence-tagged microsatellite sites in the chickpea (Cicer arietinum L.) genome. Mol Gen Genet 262:90–101

    CAS  PubMed  Article  Google Scholar 

  100. Winter P, Benko-Iseppon AM, Hüttel B, Ratnaparkhe M, Tullu A, Sonnante G, Pfaff T, Tekeoglu M, Santra D, Sant VJ, Rajesh PN, Kahl G, Muehlbauer FJ (2000) A linkage map of chickpea (Cicer arietinum L.) genome based on recombinant inbred lines from a C. arietinum x C. reticulatum cross:localization of resistance genes for Fusarium wilt races 4 and 5. Theor Appl Genet 101:1155–1163

    CAS  Article  Google Scholar 

  101. Xia Z, Watanabe S, Yamada T, Tsubokura Y, Nakashima H, Zhai H, Anai T, Sato S, Yamazaki T, Lu S, Wu H, Tabata S, Harada K (2012) Positional cloning and characterization reveal the molecular basis for soybean maturity locus E1 that regulates photoperiodic flowering. Proc Natl Acad Sci USA 109:E2155–E2164

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  102. Yamaguchi A, Wu M, Yang L, Wu G, Poethig RS, Wagner D (2009) The microRNA-regulated SBP-box transcription factor SPL3 is a direct upstream activator of LEAFY, FRUITFULL and APETALA1. Dev Cell 17:268–278

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  103. Yamashino T, Yamawaki S, Hagui E, Ueoka-Nakanishi H, Nakamichi N, Ito S, Mizuno T (2013) Clock-controlled and FLOWERING LOCUS T (FT)-dependent photoperiodic pathway in Lotus japonicus I: verification of the flowering-associated function of an FT homolog. Biosci Biotechnol Biochem 77:747–753

    CAS  PubMed  Article  Google Scholar 

  104. Yan Y, Shen L, Chen Y, Bao S, Thong Z, Yu H (2014) A MYB-domain protein EFM mediates flowering responses to environmental cues in Arabidopsis. Dev Cell 30:437–448

    CAS  PubMed  Article  Google Scholar 

  105. Yeoh CC, Balcerowicz M, Zhang L, Jaudal M, Brocard L, Ratet P, Putterill J (2013) Fine mapping links the FTa1 flowering time regulator to the dominant spring1 locus in Medicago. PLoS ONE 8:e53467

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  106. Yu CW, Liu X, Luo M, Chen C, Lin X, Tian G, Lu Q, Cui Y, Wu K (2011) HISTONE DEACETYLASE6 interacts with FLOWERING LOCUS D and regulates flowering in Arabidopsis. Plant Physiol 156:173–184

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  107. Zaman-Allah M, Jenkinson DM, Vadez V (2011) Chickpea genotypes contrasting for seed yield under terminal drought stress in the field differ for traits related to the control of water use. Funct Plant Biol 38:270–281

    Article  Google Scholar 

  108. Zhai H, Lu S, Liang S, Wu H, Zhang X, Liu B, Kong F, Yuan X, Li J, Xia Z (2014) GmFT4, a homolog of FLOWERING LOCUS T, is positively regulated by E1 and functions as a flowering repressor in soybean. PLoS ONE 9:e89030

    PubMed Central  PubMed  Article  CAS  Google Scholar 

  109. Zhang D, Cheng H, Hu Z, Wang H, Kan G, Liu C, Yu D (2013) Fine mapping of a major flowering time QTL on soybean chromosome 6 combining linkage and association analysis. Euphytica 191:23–33

    Article  Google Scholar 

  110. Zhao C, Hanada A, Yamaguchi S, Kamiya Y, Beers EP (2011) The Arabidopsis Myb genes MYR1 and MYR2 are redundant negative regulators of flowering time under decreased light intensity. Plant J 66:502–515

    CAS  PubMed  Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support by the core grant of National Institute of Plant Genome Research (NIPGR), New Delhi, India. Shouvik Das acknowledges the Department of Biotechnology (DBT), Government of India for Junior Research Fellowship award.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Swarup K. Parida.

Additional information

Hari D. Upadhyaya, Deepak Bajaj, and Shouvik Das have contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Upadhyaya, H.D., Bajaj, D., Das, S. et al. A genome-scale integrated approach aids in genetic dissection of complex flowering time trait in chickpea. Plant Mol Biol 89, 403–420 (2015). https://doi.org/10.1007/s11103-015-0377-z

Download citation

Keywords

  • Chickpea
  • Flowering time
  • GBS
  • GWAS
  • QTL
  • SNP