Plant Molecular Biology

, Volume 88, Issue 1–2, pp 119–131 | Cite as

The cytosolic branched-chain aminotransferases of Arabidopsis thaliana influence methionine supply, salvage and glucosinolate metabolism

  • Kurt Lächler
  • Janet Imhof
  • Michael Reichelt
  • Jonathan Gershenzon
  • Stefan Binder


Arabidopsis thaliana possesses six branched-chain aminotransferases (BCAT1–6). Previous studies revealed that some members of this protein family are involved in the biosynthesis of branched-chain amino acids and/or in the Met chain elongation pathway, the initial steps towards the biosynthesis of Met-derived glucosinolates. We now analyzed branched-chain aminotransferase 6 (BCAT6). In vivo GFP-tagging experiments strongly suggest this enzyme to be localized to the cytosol. Substrate specificity assays performed with recombinant enzyme revealed that BCAT6 transaminates Val, Leu and Ile as well as the corresponding 2-oxo acids but also transaminates Met and its cognate ketoacid 4-methyl-2-oxobutanoate. We established single (bcat6-1), double (bcat4-2/bcat6-1) and triple (bcat3-1/bcat4-2/bcat6-1) mutants involving BCAT6 with the latter exhibiting a clear macroscopic phenotype with smaller plants and abnormal leaf morphology. Metabolite profiling of these mutants demonstrated that BCAT6 can contribute to Met chain elongation with the triple mutant line lacking BCAT3, 4 and 6 showing a dramatic reduction of Met-derived glucosinolate species down to 32 and 14 % of wild-type levels in plant foliage and seeds, respectively. This drop in glucosinolate levels is accompanied by a 46-fold increase of free Met, demonstrating the important role of the three branched-chain aminotransferases in converting Met to its 2-oxo acid for glucosinolate chain elongation. In addition, we determined the relative amounts of 5′-deoxy-5′-methylthioadenosine, an intermediate of the Met recycling pathway. This metabolite accumulated to relative high amounts in the absence of the cytosolic BCAT4 and BCAT6, suggesting that cytosolic Met salvage also contributes to the biosynthesis of glucosinolates.


Arabidopsis thaliana Amino acids Glucosinolates Branched-chain aminotransferases 



We thank Ulrike Tengler and Conny Guha for excellent technical assistance. We are also grateful to Laura Maccarone and Sarah Kovarik for their engagement in subcellular localization studies. This work was supported by Grant Bi 590/9-2 from the Deutsche Forschungsgemeinschaft.

Supplementary material

11103_2015_312_MOESM1_ESM.pdf (166 kb)
Supplementary material 1 (PDF 167 kb)
11103_2015_312_MOESM2_ESM.pdf (935 kb)
Supplementary material 2 (PDF 936 kb)
11103_2015_312_MOESM3_ESM.pdf (92 kb)
Supplementary material 3 (PDF 93 kb)


  1. Angelovici R, Lipka AE, Deason N, Gonzalez-Jorge S, Lin H, Cepela J, Buell R, Gore MA, Dellapenna D (2013) Genome-wide analysis of branched-chain amino acid levels in Arabidopsis seeds. Plant Cell 25:4827–4843CrossRefPubMedCentralPubMedGoogle Scholar
  2. Bednarek P, Piślewska-Bednarek M, Svatoš A, Schneider B, Doubský J, Mansurova A, Humphry M, Consonni C, Panstruga R, Sanchez-Vallet A, Molina A, Schulze-Lefert P (2009) A glucosinolate metabolism pathway in living plant cells mediates broad-spectrum antifungal defense. Science 323:101–106CrossRefPubMedGoogle Scholar
  3. Binder S (2010) Branched-chain amino acid metabolism in Arabidopsis thaliana. Arabidopsis Book 8:e0137. doi: 10.1199/tab.0137
  4. Brown PD, Tokuhisa JG, Reichelt M, Gershenzon J (2003) Variation of glucosinolate accumulation among different organs and developmental stages of Arabidopsis thaliana. Phytochemistry 62:471–481CrossRefPubMedGoogle Scholar
  5. Bürstenbinder K, Waduwara I, Schoor S, Moffatt BA, Wirtz M, Minocha SC, Oppermann Y, Bouchereau A, Hell R, Sauter M (2010) Inhibition of 5′-methylthioadenosine metabolism in the Yang cycle alters polyamine levels, and impairs seedling growth and reproduction in Arabidopsis. Plant J 62:977–988PubMedGoogle Scholar
  6. Chen S, Glawischnig E, Jorgensen K, Naur P, Jorgensen B, Olsen CE, Hansen CH, Rasmussen H, Pickett JA, Halkier BA (2003) CYP79F1 and CYP79F2 have distinct functions in the biosynthesis of aliphatic glucosinolates in Arabidopsis. Plant J 33:923–937CrossRefPubMedGoogle Scholar
  7. Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–742CrossRefPubMedGoogle Scholar
  8. Diebold R, Schuster J, Däschner K, Binder S (2002) The branched-chain amino acid transaminase gene family in Arabidopsis encodes plastid and mitochondrial proteins. Plant Physiol 129:540–550CrossRefPubMedCentralPubMedGoogle Scholar
  9. Docimo T, Reichelt M, Schneider B, Kai M, Kunert G, Gershenzon J, D’Auria JC (2012) The first step in the biosynthesis of cocaine in Erythroxylum coca: the characterization of arginine and ornithine decarboxylases. Plant Mol Biol 78:599–615CrossRefPubMedGoogle Scholar
  10. Edwards K, Johnstone C, Thompson C (1991) A simple and rapid method for the preparation of plant genomic DNA for PCR analysis. Nucleic Acids Res 19:1349CrossRefPubMedCentralPubMedGoogle Scholar
  11. Eubel H, Meyer EH, Taylor NL, Bussell JD, O’Toole N, Heazlewood JL, Castleden I, Small ID, Smith SM, Millar AH (2008) Novel proteins, putative membrane transporters, and an integrated metabolic network are revealed by quantitative proteomic analysis of Arabidopsis cell culture peroxisomes. Plant Physiol 148:1809–1829CrossRefPubMedCentralPubMedGoogle Scholar
  12. Fait A, Angelovici R, Less H, Ohad I, Urbanczyk-Wochniak E, Fernie AR, Galili G (2006) Arabidopsis seed development and germination is associated with temporally distinct metabolic switches. Plant Physiol 142:839–854CrossRefPubMedCentralPubMedGoogle Scholar
  13. Halkier BA, Gershenzon J (2006) Biology and biochemistry of glucosinolates. Annu Rev Plant Biol 57:303–333CrossRefPubMedGoogle Scholar
  14. Hansen CH, Wittstock U, Olsen CE, Hick AJ, Pickett JA, Halkier BA (2001) Cytochrome P450 CYP79F1 from arabidopsis catalyzes the conversion of dihomomethionine and trihomomethionine to the corresponding aldoximes in the biosynthesis of aliphatic glucosinolates. J Biol Chem 276:11078–11085CrossRefPubMedGoogle Scholar
  15. Hogge LR, Reed DW, Underhill EW (1988) HPLC separation of glucosinolates from leaves and seeds of Arabidopsis thaliana using thermospray liquid chromatopgraphy-mass spectrometry. J Chromatogr Sci 26:551–556CrossRefGoogle Scholar
  16. Imhof J, Huber F, Reichelt M, Gershenzon J, Wiegreffe C, Lächler K, Binder S (2014) The small subunit 1 of the Arabidopsis isopropylmalate isomerase is required for normal growth and development and the early stages of glucosinolate formation. PLoS ONE 9:e91071CrossRefPubMedCentralPubMedGoogle Scholar
  17. Kaur N, Reumann S, Hu J (2009) Peroxisome biogenesis and function. Arabidopsis Book 7:e0123. doi: 10.1199/tab.0123
  18. Kaur N, Hu J (2011) Defining the plant peroxisomal proteome: from Arabidopsis to rice. Front Plant Sci 2:103CrossRefPubMedCentralPubMedGoogle Scholar
  19. Knill T, Schuster J, Reichelt H, Gershenzon J, Binder S (2008) Arabidopsis branched-chain aminotransferase 3 functions in both amino acid and glucosinolate biosynthesis. Plant Physiol 146:1028–1039CrossRefPubMedCentralPubMedGoogle Scholar
  20. Knill T, Reichelt H, Paetz C, Gershenzon J, Binder S (2009) Arabidopsis thaliana encodes a bacterial-type heterodimeric isopropylmalate isomerase involved in both Leu biosynthesis and the Met chain elongation pathway of glucosinolate formation. Plant Mol Biol 71:227–239CrossRefPubMedCentralPubMedGoogle Scholar
  21. Maloney GS, Kochevenko A, Tieman DM, Tohge T, Krieger U, Zamir D, Taylor MG, Fernie AR, Klee HJ (2010) Characterization of the branched-chain amino acid aminotransferase enzyme family in tomato. Plant Physiol 153:925–936CrossRefPubMedCentralPubMedGoogle Scholar
  22. Matthes A, Schmidt-Gattung S, Köhler D, Forner J, Wildum S, Raabe M, Urlaub H, Binder S (2007) Two DEAD-box proteins may be part of RNA-dependent high-molecular-mass protein complexes in Arabidopsis mitochondria. Plant Physiol 145:1637–1646CrossRefPubMedCentralPubMedGoogle Scholar
  23. Miyazaki JH, Yang SF (1987) The methionine salvage pathway in relation to ethylene and polyamine biosynthesis. Physiol Plant 69:366–370CrossRefGoogle Scholar
  24. Nour-Eldin HH, Andersen TG, Burow M, Madsen SR, Jorgensen ME, Olsen CE, Dreyer I, Hedrich R, Geiger D, Halkier BA (2012) NRT/PTR transporters are essential for translocation of glucosinolate defence compounds to seeds. Nature 488:531–534CrossRefPubMedGoogle Scholar
  25. Ranocha P, McNeil SD, Ziemak MJ, Li C, Tarczynski MC, Hanson AD (2001) The S-methylmethionine cycle in angiosperms: ubiquity, antiquity and activity. Plant J 25:575–584CrossRefPubMedGoogle Scholar
  26. Reumann S, Quan S, Aung K, Yang P, Manandhar-Shrestha K, Holbrook D, Linka N, Switzenberg R, Wilkerson CG, Weber AP, Olsen LJ, Hu J (2009) In-depth proteome analysis of Arabidopsis leaf peroxisomes combined with in vivo subcellular targeting verification indicates novel metabolic and regulatory functions of peroxisomes. Plant Physiol 150:125–143CrossRefPubMedCentralPubMedGoogle Scholar
  27. Sambrook J, Russell DW (2001) Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NYGoogle Scholar
  28. Sauter M, Moffatt B, Saechao MC, Hell R, Wirtz M (2013) Methionine salvage and S-adenosylmethionine: essential links between sulfur, ethylene and polyamine biosynthesis. Biochem J 451:145–154CrossRefPubMedGoogle Scholar
  29. Schuster J, Binder S (2005) The mitochondrial branched-chain aminotransferase (AtBCAT-1) is capable to initiate degradation of leucine, isoleucine and valine in almost all tissues in Arabidopsis thaliana. Plant Mol Biol 57:241–254CrossRefPubMedGoogle Scholar
  30. Schuster J, Knill T, Reichelt H, Gershenzon J, Binder S (2006) BRANCHED-CHAIN AMINOTRANSFERASE 4 is part of the chain elongation pathway in the biosynthesis of methionine-derived glucosinolates in Arabidopsis. Plant Cell 18:1–16CrossRefGoogle Scholar
  31. Singh BK (1999) Biosynthesis of valine, leucine and isoleucine. In: Singh BK (ed) Plant amino acids: biochemistry and biotechnology. Marcel Dekker, New York, pp 227–247Google Scholar
  32. Tzfira T, Tian GW, Lacroix B, Vyas S, Li J, Leitner-Dagan Y, Krichevsky A, Taylor T, Vainstein A, Citovsky V (2005) pSAT vectors: a modular series of plasmids for autofluorescent protein tagging and expression of multiple genes in plants. Plant Mol Biol 57:503–516CrossRefPubMedGoogle Scholar
  33. Weigel D, Glazebrook J (2002) Arabidopsis, a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Habor, NYGoogle Scholar
  34. Wittenbach VA, Abell LM (1999) Inhibitors of valine, leucine and isoleucine biosynthesis. In: Singh BK (ed) Plant amino acids: biochemistry and biotechnology. Marcel Dekker, New York, pp 385–416Google Scholar
  35. Wittstock U, Burow M (2010) Glucosinolate breakdown in Arabidopsis: mechanism, regulation and biological significance. Arabidopsis Book 8:e0134. doi: 10.1199/tab.0134
  36. Wittstock U, Halkier BA (2002) Glucosinolate research in the Arabidopsis era. Trends Plant Sci 7:263–270CrossRefPubMedGoogle Scholar
  37. Zybailov B, Rutschow H, Friso G, Rudella A, Emanuelsson O, Sun Q, van Wijk KJ (2008) Sorting signals, N-terminal modifications and abundance of the chloroplast proteome. PLoS ONE 3:e1994CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Kurt Lächler
    • 1
  • Janet Imhof
    • 1
  • Michael Reichelt
    • 2
  • Jonathan Gershenzon
    • 2
  • Stefan Binder
    • 1
  1. 1.Institut Molekulare BotanikUniversität UlmUlmGermany
  2. 2.Abteilung BiochemieMax Planck Institut für Chemische ÖkologieJenaGermany

Personalised recommendations