Plant Molecular Biology

, Volume 88, Issue 1–2, pp 101–117 | Cite as

Overexpression of the carbohydrate binding module of strawberry expansin2 in Arabidopsis thaliana modifies plant growth and cell wall metabolism

  • Cristina F. Nardi
  • Natalia M. Villarreal
  • Franco R. Rossi
  • Santiago Martínez
  • Gustavo A. Martínez
  • Pedro M. Civello


Several cell wall enzymes are carbohydrate active enzymes that contain a putative Carbohydrate Binding Module (CBM) in their structures. The main function of these non-catalitic modules is to facilitate the interaction between the enzyme and its substrate. Expansins are non-hydrolytic proteins present in the cell wall, and their structure includes a CBM in the C-terminal that bind to cell wall polymers such as cellulose, hemicelluloses and pectins. We studied the ability of the Expansin2 CBM (CBMFaEXP2) from strawberry (Fragaria x ananassa, Duch) to modify the cell wall of Arabidopsis thaliana. Plants overexpressing CBMFaEXP2 were characterized phenotypically and biochemically. Transgenic plants were taller than wild type, possibly owing to a faster growth of the main stem. Cell walls of CBMFaEXP2-expressing plants were thicker and contained higher amount of pectins. Lower activity of a set of enzymes involved in cell wall degradation (PG, β-Gal, β-Xyl) was found, and the expression of the corresponding genes (AtPG, Atβ-Gal, Atβ-Xyl5) was reduced also. In addition, a decrease in the expression of two A. thaliana Expansin genes (AtEXP5 and AtEXP8) was observed. Transgenic plants were more resistant to Botrytis cinerea infection than wild type, possibly as a consequence of higher cell wall integrity. Our results support the hypothesis that the overexpression of a putative CBM is able to modify plant cell wall structure leading to modulation of wall loosening and plant growth. These findings might offer a tool to controlling physiological processes where cell wall disassembly is relevant, such as fruit softening.


A. thaliana Carbohydrate binding module Cell wall Expansin Pectin Strawberry 



This work was supported by Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT), Universidad Nacional de La Plata (UNLP), Universidad Nacional de San Martín (UNSAM) and Ministerio de Ciencia, Tecnología e Innovación Productiva (MINCyT). Authors thank to José Luis Burgos (CIC Pcia. Bs. As, Argentina) for his valuable technical assistance.

Supplementary material

11103_2015_311_MOESM1_ESM.pdf (291 kb)
Supplementary material 1 (PDF 290 kb)


  1. Abasolo W et al (2009) Pectin may hinder the unfolding of xyloglucan chains during cell deformation: implications of the mechanical performance of Arabidopsis hypocotyls with pectin alterations. Mol Plant 2:990–999CrossRefPubMedGoogle Scholar
  2. Amil-Ruiz F, Blanco-Portales R, Muñoz-Blanco J, Caballero JL (2011) The strawberry plant defense mechanism: a molecular review. Plant Cell Physiol 52:1873–1903CrossRefPubMedGoogle Scholar
  3. Blumenkrantz N, Asboe-Hansen G (1973) New method for quantitative determination of uronic acids. Anal Biochem 54:484–489CrossRefPubMedGoogle Scholar
  4. Bolam DN, Xie H, White P, Simpson PJ, Hancock SM, Williamson MP, Gilbert HJ (2001) Evidence for synergy between family 2b carbohydrate binding modules in Cellulomonas fimi xylanase 11A. Biochemistry 40:2468–2477CrossRefPubMedGoogle Scholar
  5. Boraston AB, Bolam DN, Gilbert HJ, Davies GJ (2004) Carbohydrate-binding modules: fine-tuning polysaccharide recognition. Biochem J 382:769–781CrossRefPubMedCentralPubMedGoogle Scholar
  6. Boron AK, Van Loock B, Suslov D, Markakis MN, Verbelen J-P, Vissenberg K (2015) Over-expression of AtEXLA2 alters etiolated Arabidopsis hypocotyl growth. Ann Bot 115:67–80CrossRefPubMedGoogle Scholar
  7. Boyes D, Zayed A, Ascenzi R, McCaskill A, Hoffman N, Davis K, Görlach J (2001) Growth stage-based phenotypic analysis of Arabidopsis: a model for high throughput functional genomics in plants. Plant Cell 13:1499–1510CrossRefPubMedCentralPubMedGoogle Scholar
  8. Brummell DA, Harpster MH (2001) Cell wall metabolism in fruit softening an quality and its manipulation in transgenic plants. Plant Mol Biol 47:311–340CrossRefPubMedGoogle Scholar
  9. Brummell DA, Harpster MH, Civello PM, Palys JM, Bennett AB, Dunsmuir P (1999) Modification of expansin protein abundance in tomato fruit alters softening and cell wall polymer metabolism during ripening. Plant Cell 11:2203–2216CrossRefPubMedCentralPubMedGoogle Scholar
  10. Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B (2009) The carbohydrate-active enZymes database (CAZy): an expert resource for Glycogenomics. Nucleic Acids Res 37:233–238CrossRefGoogle Scholar
  11. Cantu D, Vicente AR, Greve LC, Dewey FM, Bennett AB, Labavitch JM, Powell ALT (2008a) The intersection between cell wall disassembly, ripening, and fruit susceptibility to Botrytis cinerea. Proc Natl Acad Sci USA 105:859–864CrossRefPubMedCentralPubMedGoogle Scholar
  12. Cantu D, Vicente AR, Labavitch JM, Bennett AB, Powell ALT (2008b) Strangers in the matrix: plant cell walls and pathogen susceptibility. Trends Plant Sci 13:610–617CrossRefPubMedGoogle Scholar
  13. Carpita NC, Kanabus J (1986) Extraction of starch by dimethylsulfoxide and quantitation by enzymatic assay. Anal Biochem 161:132–139CrossRefGoogle Scholar
  14. Charnock SJ, Bolam DN, Nurizzo D, Szabó L, McKie VA, Gilbert HJ, Davies GJ (2002) Promiscuity in ligand-binding: the three-dimensional structure of a Piromyces carbohydrate-binding module, CBM29-2, in complex with cello-and mannohexaose. Proc Natl Acad Sci USA 99:14077–14082CrossRefPubMedCentralPubMedGoogle Scholar
  15. Ching A, Dhugga KS, Appenzeller L, Meeley R, Bourett TM, Howard RJ, Rafalski A (2006) Brittle stalk 2 encodes a putative glycosylphosphatidylinositol-anchored protein that affects mechanical strength of maize tissues by altering the composition and structure of secondary cell walls. Planta 224:1174–1184CrossRefPubMedGoogle Scholar
  16. Choi D, Lee Y, Cho H-T, Kende H (2003) Regulation of expansin gene expression affects growth and development in transgenic rice plants. Plant Cell 15:1386–1398CrossRefPubMedCentralPubMedGoogle Scholar
  17. Choi D, Cho HT, Lee Y (2006) Expansins: expanding importance in plant growth and development. Physiol Plant 126:511–518Google Scholar
  18. Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743CrossRefPubMedGoogle Scholar
  19. Cosgrove DJ (1993) Wall extensibility: its nature, measurement and relationship to plant cell growth. New Phytol 124:1–23CrossRefPubMedGoogle Scholar
  20. Cosgrove DJ (2000a) Expansive growth of plant cell walls. Plant Physiol Biochem 38:109–124CrossRefPubMedGoogle Scholar
  21. Cosgrove DJ (2000b) Loosening of plant cell walls by expansins. Nature 407:321–326CrossRefPubMedGoogle Scholar
  22. Cosgrove DJ (2000c) New genes and new biological roles for expansins. Curr Opin Plant Biol 3:73–78CrossRefPubMedGoogle Scholar
  23. Cosgrove DJ, Bedinger P, Durachko DM (1997) Group I allergens of grass pollen as cell wall-loosening agents. Proc Natl Acad Sci USA 94:6559–6564CrossRefPubMedCentralPubMedGoogle Scholar
  24. Cosgrove DJ, Li LC, Cho HT, Hoffmann-Benning S, Moore RC, Blecker D (2002) The growing world of expansins. Plant Cell Physiol 43:1436–1444CrossRefPubMedGoogle Scholar
  25. d´Amour J, Gosselin C, Arul J, Castaigne F, Willemot C (1993) Gamma-radiation affects cell wall composition of strawberries. J Food Sci 58:182–185CrossRefGoogle Scholar
  26. Darvill A, McNeil M, Albersheim P, Delmer DP (1980) The primary cell walls of flowering plants. In: Stumpf PK, Conn EE (eds) The biochemistry of plants: a comprehensive treatise, vol 1. Academic Press, New York, pp 91–162Google Scholar
  27. Din N, Gilkes NR, Tekant B, Miller RC Jr, Anthony R, Warren J, Kilburn DG (1991) Non-hydrolytic disruption of cellulose fibres by the binding domain of a bacterial cellulase. Nat Biotechnol 9:1096–1099CrossRefGoogle Scholar
  28. Flors V et al (2007) Absence of the endo-β-1,4-glucanases Cel1 and Cel2 reduces susceptibility to Botrytis cinerea in tomato. Plant J 52:1027–1040CrossRefPubMedGoogle Scholar
  29. Freelove ACJ, Bolam DN, White P, Hazlewood GP, Gilbert HJ (2001) A novel carbohydrate-binding protein is a component of the plant cell wall-degrading complex of Piromyces equi. J Biol Chem 276:43010–43017CrossRefPubMedGoogle Scholar
  30. Gross KC (1982) A rapid and sensitive spectrophotometric method for assaying polygalacturonase using 2-cyanoacetamide. HortScience 17:933–934Google Scholar
  31. Guillen D, Sanchez S, Rodriguez-Sanoja R (2010) Carbohydrate-binding domains: multiplicity of biological roles. Appl Microbiol Biotechnol 85:1241–1249CrossRefPubMedGoogle Scholar
  32. Holsters M, Waele D, Depicker A, Messens E, Montagu M, Schell J (1978) Transfection and transformation of Agrobacterium tumefaciens. Mol Gen Genet 163:181–187CrossRefPubMedGoogle Scholar
  33. Johansen DA (1940) Plant microtechnique. McGraw-Hill Book Co, New YorkGoogle Scholar
  34. Karimi M, Inzé D, Depicker A (2002) GATEWAY” vectors for Agrobacterium-mediated plant transformation. Trends Plant Sci 7:193–195CrossRefPubMedGoogle Scholar
  35. Kramer MG, Redenbaugh K (1994) Commercialization of a tomato with an antisense polygalacturonase gene: the FLAVR SAVR™ tomato story. Euphytica 79:293–297CrossRefGoogle Scholar
  36. Levy I, Shani Z, Shoseyov O (2002) Modification of polysaccharides and plant cell wall by endo-1,4-β-glucanase and cellulose-binding domains. Biomol Eng 19:17–30CrossRefPubMedGoogle Scholar
  37. McQueen-Mason SJ, Cosgrove DJ (1995) Expansin mode of action on cell walls. Analysis of wall hydrolysis, stress relaxation, and binding. Plant Physiol 107:87–100PubMedCentralPubMedGoogle Scholar
  38. McQueen-Mason S, Durachko DM, Cosgrove DJ (1992) Two endogenous proteins that induce cell wall extension in plants. Plant Cell 4:1425–1433CrossRefPubMedCentralPubMedGoogle Scholar
  39. Minic Z (2008) Physiological roles of plant glycoside hydrolases. Planta 227:723–740CrossRefPubMedGoogle Scholar
  40. Moctezuma E, Smith DL, Gross KC (2003) Antisense suppression of a β-galactosidase gene (TBG6) in tomato increases fruit cracking. J Exp Bot 54:2025–2033CrossRefPubMedGoogle Scholar
  41. Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497CrossRefGoogle Scholar
  42. Nara K, Kato Y, Motomura Y (2001) Involvement of terminal-arabinose and -galactose pectic compounds in mealiness of apple fruit during storage. Postharvest Biol Technol 22:141–150CrossRefGoogle Scholar
  43. Nardi C, Escudero C, Villarreal N, Martínez G, Civello PM (2013) The carbohydrate-binding module of Fragaria × ananassa expansin 2 (CBM-FaExp2) binds to cell wall polysaccharides and decreases cell wall enzyme activities “in vitro”. J Plant Res 126:151–1599CrossRefPubMedGoogle Scholar
  44. Obembe OO et al (2007a) Promiscuous, non-catalytic, tandem carbohydrate-binding modules modulate the cell-wall structure and development of transgenic tobacco (Nicotiana tabacum) plants. J Plant Res 120:605–617CrossRefPubMedCentralPubMedGoogle Scholar
  45. Obembe OO, Jacobsen E, Visser R, Vincken JP (2007b) Expression of an expansin carbohydrate-binding module affects xylem and phloem formation. Afr J Biotechnol 6:1608–1616Google Scholar
  46. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:e45CrossRefPubMedCentralPubMedGoogle Scholar
  47. Pilling E, Höfte H (2003) Feedback from the wall. Curr Opin Plant Biol 6:611–616CrossRefPubMedGoogle Scholar
  48. Redgwell RJ, Fry SC (1993) Xyloglucan endotransglycosylase activity increases during kiwifruit (Actinidia deliciosa) ripening. Implications for fruit softening. Plant Physiol 103:1399–1406PubMedCentralPubMedGoogle Scholar
  49. Rohila JS, Chen M, Cerny R, Fromm ME (2004) Improved tandem affinity purification tag and methods for isolation of protein heterocomplexes from plants. Plant J 38:172–181CrossRefPubMedGoogle Scholar
  50. Rosli HG, Civello PM, Martínez GA (2004) Changes in cell wall composition of three Fragaria x ananassa cultivars with different softening rate during ripening. Plant Physiol Biochem 42:823–831CrossRefPubMedGoogle Scholar
  51. Ryden P, Sugimoto-Shirasu K, Smith AC, Findlay K, Reiter WD, McCann MC (2003) Tensile properties of Arabidopsis cell walls depend on both a xyloglucan cross-linked microfibrillar network and rhamnogalacturonan II-borate complexes. Plant Physiol 132:1033–1040CrossRefPubMedCentralPubMedGoogle Scholar
  52. Safra-Dassa L, Shani Z, Danin A, Roiz L, Shoseyov O, Wolf S (2006) Growth modulation of transgenic potato plants by heterologous expression of bacterial carbohydrate-binding module. Mol Breed 17:355–364CrossRefGoogle Scholar
  53. Schröder R, Wegrzyn TF, Bolitho KM, Redgwell RJ (2004) Mannan transglycosylase: a novel enzyme activity in cell walls of higher plants. Planta 219:590–600CrossRefPubMedGoogle Scholar
  54. Shoseyov O, Shani Z, Levy I (2006) Carbohydrate binding modules: biochemical properties and novel applications. Microbiol Mol Biol Rev 70:283–295CrossRefPubMedCentralPubMedGoogle Scholar
  55. Shpigel E, Roiz L, Goren R, Shoseyov O (1998) Bacterial cellulose-binding domain modulates in vitro elongation of different plant cells. Plant Physiol 117:1185–1194CrossRefPubMedCentralPubMedGoogle Scholar
  56. Sigrist CJA et al (2002) PROSITE: a documented database using patterns and profiles as motif descriptors. Brief Bioinform 3:265–274CrossRefPubMedGoogle Scholar
  57. Tanaka K, Murata K, Yamazaki M, Onosato K, Miyao A, Hirochika H (2003) Three distinct rice cellulose synthase catalytic subunit genes required for cellulose synthesis in the secondary wall. Plant Physiol 133:73–83CrossRefPubMedCentralPubMedGoogle Scholar
  58. Taylor NG, Howells RM, Huttly AK, Vickers K, Turner SR (2003) Interactions among three distinct CesA proteins essential for cellulose synthesis. Proc Natl Acad Sci USA 100:1450–1455CrossRefPubMedCentralPubMedGoogle Scholar
  59. Turner SR, Somerville CR (1997) Collapsed xylem phenotype of Arabidopsis identifies mutants deficient in cellulose deposition in the secondary cell wall. Plant Cell 9:689–701CrossRefPubMedCentralPubMedGoogle Scholar
  60. van Kan JAL (2006) Licensed to kill: the lifestyle of a necrotrophic plant pathogen. Trends Plant Sci 11:247–253CrossRefPubMedGoogle Scholar
  61. Vicente AR, Costa ML, Martínez GA, Chaves AR, Civello PM (2005) Effect of heat treatments on cell wall degradation and softening in strawberry fruit. Postharvest Biol Technol 38:213–222CrossRefGoogle Scholar
  62. Vicente AR, Saladié M, Rose JKC, Labavitch JM (2007) The linkage between cell wall metabolism and fruit softening: looking to the future. J Sci Food Agric 87:1435–1448CrossRefGoogle Scholar
  63. Villarreal NM, Bustamante CA, Civello PM, Martínez GA (2010) Effect of ethylene and 1-MCP treatments on strawberry fruit ripening. J Sci Food Agric 90:683–689PubMedGoogle Scholar
  64. Vincken JP, Schols HA, Oomen RJFJ, McCann MC, Ulvskov P, Voragen AGJ, Visser RGF (2003) If homogalacturonan were a side chain of rhamnogalacturonan I. Implications for cell wall architecture. Plant Physiol 132:1781–1789CrossRefPubMedCentralPubMedGoogle Scholar
  65. Vorwerk S, Somerville S, Somerville C (2004) The role of plant cell wall polysaccharide composition in disease resistance. Trends Plant Sci 9:203–209CrossRefPubMedGoogle Scholar
  66. Wainwright S, Briggs W, Currey J, Gosline J (1976) Mechanical, design in organisms. Hodder & Stoughton Educ, LondonGoogle Scholar
  67. Wang G, Gao Y, Wang J, Yang L, Song R, Li X, Shi J (2011) Overexpression of two cambium-abundant Chinese fir (Cunninghamia lanceolata) α-expansin genes ClEXPA1 and ClEXPA2 affect growth and development in transgenic tobacco and increase the amount of cellulose in stem cell walls. Plant Biotechnol J 9:486–502CrossRefPubMedGoogle Scholar
  68. Zenoni S et al (2004) Downregulation of the Petunia hybrida α-expansin gene PhEXP1 reduces the amount of crystalline cellulose in cell walls and leads to phenotypic changes in petal limbs. Plant Cell 16:295–308CrossRefPubMedCentralPubMedGoogle Scholar
  69. Zenoni S et al (2011) Overexpression of PhEXPA1 increases cell size, modifies cell wall polymer composition and affects the timing of axillary meristem development in Petunia hybrida. New Phytol 191:662–677CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Cristina F. Nardi
    • 1
    • 4
  • Natalia M. Villarreal
    • 1
  • Franco R. Rossi
    • 1
  • Santiago Martínez
    • 2
  • Gustavo A. Martínez
    • 1
    • 3
  • Pedro M. Civello
    • 2
    • 3
  1. 1.IIB-INTECH (CONICET-UNSAM), Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de ChascomúsBuenos AiresArgentina
  2. 2.INFIVE (CONICET-UNLP). Instituto de Fisiología VegetalLa PlataArgentina
  3. 3.Facultad de Ciencias ExactasUniversidad Nacional de La Plata (UNLP)La PlataArgentina
  4. 4.Instituto de Ciencias Polares, Recursos Naturales y AmbienteUNTDF Universidad Nacional de Tierra del FuegoTierra del FuegoArgentina

Personalised recommendations