Advertisement

Plant Molecular Biology

, Volume 87, Issue 6, pp 565–575 | Cite as

An abscisic acid inducible Arabidopsis MAPKKK, MAPKKK18 regulates leaf senescence via its kinase activity

  • Daisuke Matsuoka
  • Takuto Yasufuku
  • Tomoyuki Furuya
  • Takashi Nanmori
Article

Abstract

Abscisic acid (ABA) is a phytohormone that regulates many physiological functions, such as plant growth, development and stress responses. The MAPK cascade plays an important role in ABA signal transduction. Several MAPK and MAPKK molecules are reported to function in ABA signaling; however, there have been few studies related to the identification of MAPKKK upstream of MAPKK in ABA signaling. In this study, we show that an Arabidopsis MAPKKK, MAPKKK18 functions in ABA signaling. The expression of MAPKKK18 was induced by ABA treatment. Yeast two-hybrid analysis revealed that MAPKKKK18 interacted with MKK3, which interacted with C-group MAPK, MPK1/2/7. Immunoprecipitated kinase assay showed that the 3xFlag-tagged MAPKKK18, expressed in Arabidopsis plants, was activated when treated with ABA. These results indicate the possibility that the MAPK cascade is composed of MAPKKK18, MKK3 and MPK1/2/7 in ABA signaling. The transgenic plants overexpressing MAPKKK18 (35S:MAPKKK18) and its kinase negative mutant (35S:MAPKKK18 KN) were generated, and their growth was monitored. Compared with the WT plant, 35S:MAPKKK18 and 35S:MAPKKK18 KN showed smaller and bigger phenotypes, respectively. Senescence of the rosette leaves was promoted in 35S:MAPKKK18, but suppressed in 35S:MAPKKK18 KN. Furthermore, ABA-induced leaf senescence was accelerated in 35S:MAPKKK18. These results suggest that MAPKKK18 controls the plant growth by adjusting the timing of senescence via its protein kinase activity in ABA dependent manners.

Keywords

ABA Leaf senescence MAPK cascade MAPKKK Protein kinase assay 

References

  1. Bechtold N, Pelletier G (1998) In planta Agrobacterium-mediated transformation of adult Arabidopsis thaliana plants by vacuum infiltration. Methods Mol Biol 82:259–266. doi: 10.1385/0-89603-391-0:259 PubMedGoogle Scholar
  2. Colcombet J, Hirt H (2008) Arabidopsis MAPKs: a complex signalling network involved in multiple biological processes. Biochem J 413:217–226. doi: 10.1042/BJ20080625 CrossRefPubMedGoogle Scholar
  3. Dóczi R, Brader G, Pettkó-Szandtner A, Rajh I, Djamei A, Pitzschke A, Teige M, Hirt H (2007) The Arabidopsis mitogen-activated protein kinase kinase MKK3 is upstream of group C mitogen-activated protein kinases and participates in pathogen signaling. Plant Cell 19:3266–3279. doi: 10.1105/tpc.106.050039 CrossRefPubMedCentralPubMedGoogle Scholar
  4. Finkelstein R (2013) Abscisic acid synthesis and response. Arabidopsis Book 11:e0166. doi: 10.1199/tab.0166 CrossRefPubMedCentralPubMedGoogle Scholar
  5. Hubbard KE, Nishimura N, Hitomi K, Getzoff ED, Schroeder JI (2010) Early abscisic acid signal transduction mechanisms: newly discovered components and newly emerging questions. Genes Dev 24:1695–1708. doi: 10.1101/gad.1953910 CrossRefPubMedCentralPubMedGoogle Scholar
  6. Hwa CM, Yang XC (2008) The AtMKK3 pathway mediates ABA and salt signaling in Arabidopsis. Acta Physiol Plant 30:277–286. doi: 10.1007/s11738-007-0117-3 CrossRefGoogle Scholar
  7. Ichimura K, Mizoguchi T, Yoshida R, Yuasa T, Shinozaki K (2000) Various abiotic stresses rapidly activate Arabidopsis MAP kinases ATMPK4 and ATMPK6. Plant J 24:655–665. doi: 10.1046/j.1365-313x.2000.00913.x CrossRefPubMedGoogle Scholar
  8. Jammes F, Song C, Shin D, Munemasa S, Takeda K, Gu D, Cho D, Lee S, Giordo R, Sritubtim S, Leonhardt N, Ellis BE, Murata Y, Kwak JM (2009) MAP kinases MPK9 and MPK12 are preferentially expressed in guard cells and positively regulate ROS-mediated ABA signaling. Proc Natl Acad Sci USA 106:20520–20525. doi: 10.1073/pnas.0907205106 CrossRefPubMedCentralPubMedGoogle Scholar
  9. Khan M, Rozhon W, Poppenberger B (2014) The role of hormones in the aging of plants: a mini-review. Gerontology 60:49–55. doi: 10.1159/000354334 CrossRefPubMedGoogle Scholar
  10. Lee IC, Hong SW, Whang SS, Lim PO, Nam HG, Koo JC (2011) Age-dependent action of an ABA-inducible receptor kinase, RPK1, as a positive regulator of senescence in arabidopsis leaves. Plant Cell Physiol 52:651–662. doi: 10.1093/pcp/pcr026 CrossRefPubMedGoogle Scholar
  11. Liu Y (2012) Roles of mitogen-activated protein kinase cascades in ABA signaling. Plant Cell Rep 31:1–12. doi: 10.1007/s00299-011-1130-y CrossRefPubMedGoogle Scholar
  12. MAPK Group (2002) Mitogen-activated protein kinase cascades in plants: a new nomenclature. Trends Plant Sci 7:301–308. doi: 10.1016/S1360-1385(02)02302-6 CrossRefGoogle Scholar
  13. Matsuoka D, Nanmori T, Sato K, Fukami Y, Kikkawa U, Yasuda T (2002) Activation of AtMEK1, an Arabidopsis mitogen-activated protein kinase kinase, in vitro and in vivo: analysis of active mutants expressed in E. coli and generation of the active form in stress response in seedlings. Plant J 29:637–647. doi: 10.1046/j.0960-7412.2001.01246.x CrossRefPubMedGoogle Scholar
  14. Menges M, Dóczi R, Okrész L, Morandini P, Mizzi L, Soloviev M, Murray JA, Bögre L (2008) Comprehensive gene expression atlas for the Arabidopsis MAP kinase signalling pathways. New Phytol 179:643–662. doi: 10.1111/j.1469-8137.2008.02552.x CrossRefPubMedGoogle Scholar
  15. Mori IC, Murata Y, Yang Y, Munemasa S, Wang YF, Andreoli S, Tiriac H, Alonso JM, Harper JF, Ecker JR, Kwak JM, Schroeder JI (2006) CDPKs CPK6 and CPK3 function in ABA regulation of guard cell S-type anion- and Ca2+-permeable channels and stomatal closure. PLoS Biol 4:e327. doi: 10.1371/journal.pbio.0040327 CrossRefPubMedCentralPubMedGoogle Scholar
  16. Munemasa S, Muroyama D, Nagahashi H, Nakamura Y, Mori IC, Murata Y (2013) Regulation of reactive oxygen species-mediated abscisic acid signaling in guard cells and drought tolerance by glutathione. Front Plant Sci 4:472. doi: 10.3389/fpls.2013.00472 CrossRefPubMedCentralPubMedGoogle Scholar
  17. Nakagami H, Pitzschke A, Hirt H (2005) Emerging MAP kinase pathways in plant stress signaling. Trends Plant Sci 10:339–346. doi: 10.1016/j.tplants.2005.05.009 CrossRefPubMedGoogle Scholar
  18. Porra RJ, Thompson WA, Kriedemann PE (1989) Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochim Biophys Acta 975:384–394. doi: 10.1016/S0005-2728(89)80347-0 CrossRefGoogle Scholar
  19. Sasayama D, Matsuoka D, Oka M, Shitamichi N, Furuya T, Azuma T, Itoh K, Nanmori T (2011) MAP3Kδ4, an Arabidopsis raf-like MAP3K, regulates plant growth and shoot branching. Plant Biotechnol 28:463–470. doi: 10.5511/plantbiotechnology.11.1027a CrossRefGoogle Scholar
  20. Shitamici N, Matsuoka D, Sasayama D, Furuya T, Nanmori T (2013) Over-expression of MAP3Kδ4, an ABA-inducible raf-like MAP3K that confers salt tolerance in Arabidopsis. Plant Biotechnol 30:111–118. doi: 10.5511/plantbiotechnology.13.0108a CrossRefGoogle Scholar
  21. Takahashi Y, Soyano T, Sasabe M, Machida Y (2004) A MAP kinase cascade that controls plant cytokinesis. J Biochem 136:127–132. doi: 10.1093/jb/mvh118 CrossRefPubMedGoogle Scholar
  22. Wang XQ, Ullah H, Jones AM, Assmann SM (2001) G protein regulation of ion channels and abscisic acid signaling in Arabidopsis guard cells. Science 292:2070–2072. doi: 10.1126/science.1059046
  23. Winter D, Vinegar B, Nahal H, Ammar R, Wilson GV, Provart NJ (2007) An “Electronic fluorescent pictograph” browser for exploring and analyzing large-scale biological data sets. PLoS One 2(8):e718. doi: 10.1371/journal.pone.0000718 CrossRefPubMedCentralPubMedGoogle Scholar
  24. Wise AA, Liu Z, Binns AN (2006) Three methods for the introduction of foreign DNA into Agrobacterium. Methods Mol Biol 343:43–53. doi: 10.1385/1-59745-130-4:43 PubMedGoogle Scholar
  25. Xing Y, Jia W, Zhang J (2008) AtMKK1 mediates ABA-induced CAT1 expression and H2O2 production via AtMPK6-coupled signaling in Arabidopsis. Plant J 54:440–451. doi: 10.1111/j.1365-313X.2008.03433.x CrossRefPubMedGoogle Scholar
  26. Yoo SD, Cho YH, Tena G, Xiong Y, Sheen J (2008) Dual control of nuclear EIN3 by bifurcate MAPK cascades in C2H4 signalling. Nature 451:789–795. doi: 10.1038/nature06543 CrossRefPubMedCentralPubMedGoogle Scholar
  27. Zhang K, Xia X, Zhang Y, Gan SS (2012) An ABA-regulated and Golgi-localized protein phosphatase controls water loss during leaf senescence in Arabidopsis. Plant J 69:667–678. doi: 10.1111/j.1365-313X.2011.04821.x CrossRefPubMedGoogle Scholar
  28. Zhou C, Cai Z, Guo Y, Gan S (2009) An Arabidopsis mitogen-activated protein kinase cascade, MKK9–MPK6, plays a role in leaf senescence. Plant Physiol 150:167–177. doi: 10.1104/pp.108.133439 CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Daisuke Matsuoka
    • 1
  • Takuto Yasufuku
    • 1
  • Tomoyuki Furuya
    • 1
  • Takashi Nanmori
    • 1
    • 2
  1. 1.Graduate School of Agricultural ScienceKobe UniversityKobeJapan
  2. 2.Research Center for Environmental Genomics, Organization of Advanced Science and TechnologyKobe UniversityKobeJapan

Personalised recommendations