Advertisement

Plant Molecular Biology

, Volume 87, Issue 3, pp 287–302 | Cite as

The pearl millet mitogen-activated protein kinase PgMPK4 is involved in responses to downy mildew infection and in jasmonic- and salicylic acid-mediated defense

  • Prasad Melvin
  • S. Ashok Prabhu
  • Mariswamy Veena
  • Sekhar Shailasree
  • Morten Petersen
  • John Mundy
  • Shekar H. Shetty
  • K. Ramachandra Kini
Article

Abstract

Plant mitogen-activated protein kinases (MPKs) transduce signals required for the induction of immunity triggered by host recognition of pathogen-associated molecular patterns. We isolated a full-length cDNA of a group B MPK (PgMPK4) from pearl millet. Autophosphorylation assay of recombinant PgMPK4 produced in Escherichia coli confirmed it as a kinase. Differential accumulation of PgMPK4 mRNA and kinase activity was observed between pearl millet cultivars 852B and IP18292 in response to inoculation with the downy mildew oomycete pathogen Sclerospora graminicola. This increased accumulation of PgMPK4 mRNA, kinase activity as well as nuclear-localization of PgMPK protein(s) was only detected in the S. graminicola resistant cultivar IP18292 with a ~tenfold peak at 9 h post inoculation. In the susceptible cultivar 852B, PgMPK4 mRNA and immuno-detectable nuclear PgMPK could be induced by application of the chemical elicitor β-amino butyric acid, the non-pathogenic bacteria Pseudomonas fluorescens, or by the phytohormones jasmonic acid (JA) or salicylic acid (SA). Furthermore, kinase inhibitor treatments indicated that PgMPK4 is involved in the JA- and SA-mediated expression of three defense genes, lipoxygenase, catalase 3 and polygalacturonase-inhibitor protein. These findings indicate that PgMPK/s contribute to pearl millet defense against the downy mildew pathogen by activating the expression of defense proteins.

Keywords

Elicitors Immunolocalization Kinase inhibitors MPK PR proteins qPCR 

Notes

Acknowledgments

This work was financially supported by the University Grant Commission, New Delhi, India. We acknowledge the recognition of University of Mysore as an Institution of Excellence by the Government of India with financial support from the Ministry of Human Resource Development and University Grants Commission, India. The European Molecular Biology Organization is thanked for a short-term fellowship to MP. JM thanks the Novo Foundation for support from the University of Copenhagen Denmark-India program.

Supplementary material

11103_2014_276_MOESM1_ESM.pdf (272 kb)
Supplementary material 1 (PDF 272 kb)

References

  1. Andreasson E, Jenkins T, Brodersen P, Thorgrimsen S, Petersen NHT, Zhu SJ, Qiu JL, Micheelsen P, Rocher A, Petersen M, Newman MA, Nielsen HB, Hirt H, Somssich I, Mattsson O, Mundy J (2005) The MAP kinase substrate MKS1 is a regulator of plant defense responses. EMBO J 24(14):2579–2589PubMedCentralPubMedCrossRefGoogle Scholar
  2. Asai T, Tena G, Plotnikova J, Willmann MR, Chiu WL, Gomez-Gomez L, Boller T, Ausubel FM, Sheen J (2002) MAP kinase signalling cascade in Arabidopsis innate immunity. Nature 415(6875):977–983PubMedCrossRefGoogle Scholar
  3. Babitha MP, Prakash HS, Shetty HS (2004) Purification and properties of lipoxygenase induced in downy mildew resistant pearl millet seedlings due to infection with Sclerospora graminicola. Plant Sci 166(1):31–39CrossRefGoogle Scholar
  4. Beckers GJM, Jaskiewicz M, Liu YD, Underwood WR, He SY, Zhang SQ, Conrath U (2009) Mitogen-activated protein kinases 3 and 6 are required for full priming of stress responses in Arabidopsis thaliana. Plant Cell 21(3):944–953PubMedCentralPubMedCrossRefGoogle Scholar
  5. Bethke G, Pecher P, Eschen-Lippold L, Tsuda K, Katagiri F, Glazebrook J, Scheel D, Lee J (2012) Activation of the Arabidopsis thaliana mitogen-activated protein kinase mpk11 by the flagellin-derived elicitor peptide, flg22. Mol Plant Microbe In 25(4):471–480CrossRefGoogle Scholar
  6. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254PubMedCrossRefGoogle Scholar
  7. Cheong YH, Moon BC, Kim JK, Kim CY, Kim MC, Kim IH, Park CY, Kim JC, Park BO, Koo SC, Yoon HW, Chung WS, Lim CO, Lee SY, Cho MJ (2003) BWMK1, a rice mitogen-activated protein kinase, locates in the nucleus and mediates pathogenesis-related gene expression by activation of a transcription factor. Plant Physiol 132(4):1961–1972PubMedCentralPubMedCrossRefGoogle Scholar
  8. De Lorenzo G, Ferrari S (2002) Polygalacturonase-inhibiting proteins in defense against phytopathogenic fungi. Curr Opin Plant Biol 5(4):295–299PubMedCrossRefGoogle Scholar
  9. Deepak S, Niranjan-Raj S, Shailasree S, Kini RK, Boland W, Shetty HS, Mithoefer A (2007) Induction of resistance against downy mildew pathogen in pearl millet by a synthetic jasmonate analogon. Physiol Mol Plant P 71(1–3):96–105CrossRefGoogle Scholar
  10. Dereeper A, Guignon V, Blanc G, Audic S, Buffet S, Chevenet F, Dufayard JF, Guindon S, Lefort V, Lescot M, Claverie JM, Gascuel O (2008) Phylogeny.fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Res 36(Web Server issue):W465–W469PubMedCentralPubMedCrossRefGoogle Scholar
  11. Doczi R, Brader G, Pettko-Szandtner A, Rajh I, Djamei A, Pitzschke A, Teige M, Hirt H (2007) The Arabidopsis mitogen-activated protein kinase kinase MKK3 is upstream of group C mitogen-activated protein kinases and participates in pathogen signaling. Plant Cell 19(10):3266–3279PubMedCentralPubMedCrossRefGoogle Scholar
  12. Favata MF, Horiuchi KY, Manos EJ, Daulerio AJ, Stradley DA, Feeser WS, Van Dyk DE, Pitts WJ, Earl RA, Hobbs F, Copeland RA, Magolda RL, Scherle PA, Trzaskos JM (1998) Identification of a novel inhibitor of mitogen-activated protein kinase kinase. J Biol Chem 273(29):18623–18632PubMedCrossRefGoogle Scholar
  13. Fiil BK, Petersen K, Petersen M, Mundy J (2009) Gene regulation by MAP kinase cascades. Curr Opin Plant Biol 12(5):615–621PubMedCrossRefGoogle Scholar
  14. Glazebrook J (2005) Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu Rev Phytopathol 43:205–227PubMedCrossRefGoogle Scholar
  15. Gomez-Gomez L, Boller T (2000) FLS2: an LRR receptor-like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis. Mol Cell 5(6):1003–1011PubMedCrossRefGoogle Scholar
  16. Hamel LP, Nicole MC, Sritubtim S, Morency MJ, Ellis M, Ehlting J, Beaudoin N, Barbazuk B, Klessig D, Lee J, Martin G, Mundy J, Ohashi Y, Scheel D, Sheen J, Xing T, Zhang SQ, Seguin A, Ellis BE (2006) Ancient signals: comparative genomics of plant MAPK and MAPKK gene families. Trends Plant Sci 11(4):192–198PubMedCrossRefGoogle Scholar
  17. Hash CT, Raj AGB, Lindup S, Sharma A, Beniwal CR, Folkertsma RT, Mahalakshmi V, Zerbini E, Blummel M (2003) Opportunities for marker-assisted selection (MAS) to improve the feed quality of crop residues in pearl millet and sorghum. Field Crop Res 84(1–2):79–88CrossRefGoogle Scholar
  18. Hettenhausen C, Baldwin IT, Wu JQ (2012) Silencing MPK4 in Nicotiana attenuata enhances photosynthesis and seed production but compromises abscisic acid-induced stomatal closure and guard cell-mediated resistance to Pseudomonas syringae pv. Tomato DC3000. Plant Physiol 158(2):759–776PubMedCentralPubMedCrossRefGoogle Scholar
  19. Huang YF, Li H, Gupta R, Morris PC, Luan S, Kieber JJ (2000) ATMPK4, an arabidopsis homolog of mitogen-activated protein kinase, is activated in vitro by AtMEK1 through threonine phosphorylation. Plant Physiol 122(4):1301–1310PubMedCentralPubMedCrossRefGoogle Scholar
  20. Ichimura K, Shinozaki K, Tena G, Sheen J, Henry Y, Champion A, Kreis M, Zhang S, Hirt H, Wilson C (2002) Mitogen-activated protein kinase cascades in plants: a new nomenclature. Trends Plant Sci 7(7):301–308CrossRefGoogle Scholar
  21. Jin HL, Liu YD, Yang KY, Kim CY, Baker B, Zhang SQ (2003) Function of a mitogen-activated protein kinase pathway in N gene-mediated resistance in tobacco. Plant J 33(4):719–731PubMedCrossRefGoogle Scholar
  22. Kessmann H, Staub T, Hofmann C, Maetzke T, Herzog J, Ward E, Uknes S, Ryals J (1994) Induction of systemic acquired disease resistance in plants by chemicals. Annu Rev Phytopathol 32:439–459PubMedCrossRefGoogle Scholar
  23. Kohler A, Schwindling S, Conrath U (2002) Benzothiadiazole-induced priming for potentiated responses to pathogen infection, wounding, and infiltration of water into leaves requires the NPR1/NIM1 gene in Arabidopsis. Plant Physiol 128(3):1046–1056PubMedCentralPubMedCrossRefGoogle Scholar
  24. Kunkel BN, Brooks DM (2002) Cross talk between signaling pathways in pathogen defense. Curr Opin Plant Biol 5(4):325–331PubMedCrossRefGoogle Scholar
  25. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227(5259):680–685PubMedCrossRefGoogle Scholar
  26. Liu YD, Zhang SQ (2004) Phosphorylation of 1-aminocyclopropane-1-carboxylic acid synthase by MPK6, a stress-responsive mitogen-activated protein kinase, induces ethylene biosynthesis in Arabidopsis. Plant Cell 16(12):3386–3399PubMedCentralPubMedCrossRefGoogle Scholar
  27. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25(4):402–4082PubMedCrossRefGoogle Scholar
  28. Loake G, Grant M (2007) Salicylic acid in plant defence-the players and protagonists. Curr Opin Plant Biol 10(5):466–472PubMedCrossRefGoogle Scholar
  29. Lu C, Han MH, Guevara-Garcia A, Fedoroff NV (2002) Mitogen-activated protein kinase signaling in postgermination arrest of development by abscisic acid. Proc Natl Acad Sci USA 99(24):15812–15817PubMedCentralPubMedCrossRefGoogle Scholar
  30. Melvin P, Prabhu SA, Anup CP, Shailasree S, Shetty HS, Kini KR (2014) Involvement of mitogen-activated protein kinase signalling in pearl millet-downy mildew interaction. Plant Sci 214:29–37PubMedCrossRefGoogle Scholar
  31. Misas-Villamil JC, van der Hoorn RAL (2008) Enzyme-inhibitor interactions at the plant-pathogen interface. Curr Opin Plant Biol 11(4):380–388PubMedCrossRefGoogle Scholar
  32. Miya A, Albert P, Shinya T, Desaki Y, Ichimura K, Shirasu K, Narusaka Y, Kawakami N, Kaku H, Shibuya N (2007) CERK1, a LysM receptor kinase, is essential for chitin elicitor signaling in Arabidopsis. Proc Natl Acad Sci USA 104(49):19613–19618PubMedCentralPubMedCrossRefGoogle Scholar
  33. Nakagami H, Pitzschke A, Hirt H (2005) Emerging MAP kinase pathways in plant stress signalling. Trends Plant Sci 10(7):339–346PubMedCrossRefGoogle Scholar
  34. Noutoshi Y, Ikeda M, Shirasu K (2012) Diuretics prime plant immunity in Arabidopsis thaliana. PLoS ONE 7(10):e48443PubMedCentralPubMedCrossRefGoogle Scholar
  35. Opdenakker K, Remans T, Vangronsveld J, Cuypers A (2012) Mitogen-activated protein (MAP) kinases in plant metal stress: regulation and responses in comparison to other biotic and abiotic stresses. Int J Mol Sci 13(6):7828–7853PubMedCentralPubMedCrossRefGoogle Scholar
  36. Petersen M, Brodersen P, Naested H, Andreasson E, Lindhart U, Johansen B, Nielsen HB, Lacy M, Austin MJ, Parker JE, Sharma SB, Klessig DF, Martienssen R, Mattsson O, Jensen AB, Mundy J (2000) Arabidopsis MAP kinase 4 negatively regulates systemic acquired resistance. Cell 103(7):1111–1120PubMedCrossRefGoogle Scholar
  37. Pieterse CM, Leon-Reyes A, Van der Ent S, Van Wees SC (2009) Networking by small-molecule hormones in plant immunity. Nat Chem Biol 5(5):308–316PubMedCrossRefGoogle Scholar
  38. Prabhu SA, Kini KR, Raj SN, Moerschbacher BM, Shetty HS (2012) Polygalacturonase-inhibitor proteins in pearl millet: possible involvement in resistance against downy mildew. Acta Biochim Biophys Sin 44(5):415–423PubMedCrossRefGoogle Scholar
  39. Prestamo G, Testillano PS, Vicente O, Gonzalez-Melendi P, Coronado MJ, Wilson C, Heberle-Bors E, Risueno MC (1999) Ultrastructural distribution of a MAP kinase and transcripts in quiescent and cycling plant cells and pollen grains. J Cell Sci 112(Pt 7):1065–1076PubMedGoogle Scholar
  40. Ramirez V, Lopez A, Mauch-Mani B, Gil MJ, Vera P (2013) An extracellular subtilase switch for immune priming in Arabidopsis. PLoS Pathog 9(6):e1003445PubMedCentralPubMedCrossRefGoogle Scholar
  41. Rodriguez MC, Petersen M, Mundy J (2010) Mitogen-activated protein kinase signaling in plants. Annu Rev Plant Biol 61:621–649PubMedCrossRefGoogle Scholar
  42. Romeis T (2001) Protein kinases in the plant defence response. Curr Opin Plant Biol 4(5):407–414PubMedCrossRefGoogle Scholar
  43. Romeis T, Piedras P, Zhang S, Klessig DF, Hirt H, Jones JD (1999) Rapid Avr9-and Cf-9-dependent activation of MAP kinases in tobacco cell cultures and leaves: convergence of resistance gene, elicitor, wound, and salicylate responses. Plant Cell 11(2):273–287PubMedCentralPubMedGoogle Scholar
  44. Samuel MA, Ellis BE (2002) Double jeopardy both overexpression and suppression of a redox-activated plant mitogen-activated protein kinase render tobacco plants ozone sensitive. Plant Cell 14(9):2059–2069PubMedCentralPubMedCrossRefGoogle Scholar
  45. Sehgal D, Rajaram V, Armstead IP, Vadez V, Yadav YP, Hash CT, Yadav RS (2012) Integration of gene-based markers in a pearl millet genetic map for identification of candidate genes underlying drought tolerance quantitative trait loci. BMC Plant Biol 12:9PubMedCentralPubMedCrossRefGoogle Scholar
  46. Shailasree S, Ramachandra KK, Shetty SH (2007) β-amino butyric acid-induced resistance in pearl millet to downy mildew is associated with accumulation of defence-related proteins. Australas Plant Path 36(2):204–211CrossRefGoogle Scholar
  47. Shen XL, Yuan B, Liu HB, Li XH, Xu CG, Wang SP (2010) Opposite functions of a rice mitogen-activated protein kinase during the process of resistance against Xanthomonas oryzae. Plant J 64(1):86–99PubMedGoogle Scholar
  48. Shevchenko A, Tomas H, Havlis J, Olsen JV, Mann M (2006) In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat Protoc 1:2856–2860PubMedCrossRefGoogle Scholar
  49. Singh SD (1995) Downy mildew of pearl millet. Plant Dis 79:545–550CrossRefGoogle Scholar
  50. Sinha AK, Jaggi M, Raghuram B, Tuteja N (2011) Mitogen-activated protein kinase signaling in plants under abiotic stress. Plant Signal Behav 6(2):196–203PubMedCentralPubMedCrossRefGoogle Scholar
  51. Sujeeth N, Deepak S, Shailasree S, Kini RK, Shetty SH, Hille J (2010) Hydroxyproline-rich glycoproteins accumulate in pearl millet after seed treatment with elicitors of defense responses against Sclerospora graminicola. Physiol Mol Plant Pathol 74(3–4):230–237CrossRefGoogle Scholar
  52. Takahashi F, Yoshida R, Ichimura K, Mizoguchi T, Seo S, Yonezawa M, Maruyama K, Yamaguchi-Shinozaki K, Shinozaki K (2007) The mitogen-activated protein kinase cascade MKK3-MPK6 is an important part of the jasmonate signal transduction pathway in Arabidopsis. Plant Cell 19(3):805–818PubMedCentralPubMedCrossRefGoogle Scholar
  53. Wang MM, Zhang Y, Wang J, Wu XL, Guo XQ (2007) A novel MAP kinase gene in cotton (Gossypium hirsutum L.), GhMAPK, is involved in response to diverse environmental stresses. J Biochem Mol Biol 40(3):325–332PubMedCrossRefGoogle Scholar
  54. Wang W, Barnaby JY, Tada Y, Li H, Tor M, Caldelari D, Lee DU, Fu XD, Dong XN (2011) Timing of plant immune responses by a central circadian regulator. Nature 470(7332):110–126PubMedCrossRefGoogle Scholar
  55. Wasternack C, Parthier B (1997) Jasmonate-signalled plant gene expression. Trends Plant Sci 2(8):302–307CrossRefGoogle Scholar
  56. Xing Y, Jia WS, Zhang JH (2007) AtMEK1 mediates stress-induced gene expression of CAT1 catalase by triggering H2O2 production in Arabidopsis. J Exp Bot 58(11):2969–2981PubMedCrossRefGoogle Scholar
  57. Xiong L, Yang Y (2003) Disease resistance and abiotic stress tolerance in rice are inversely modulated by an abscisic acid-inducible mitogen-activated protein kinase. Plant Cell 15(3):745–759PubMedCentralPubMedCrossRefGoogle Scholar
  58. Xu XP, Chen CH, Fan BF, Chen ZX (2006) Physical and functional interactions between pathogen-induced Arabidopsis WRKY18, WRKY40, and WRKY60 transcription factors. Plant Cell 18(5):1310–1326PubMedCentralPubMedCrossRefGoogle Scholar
  59. Yuasa T, Ichimura K, Mizoguchi T, Shinozaki K (2001) Oxidative stress activates ATMPK6, an Arabidopsis homologue of MAP kinase. Plant Cell Physiol 42(9):1012–1016PubMedCrossRefGoogle Scholar
  60. Zhang S, Klessig DF (1997) Salicylic acid activates a 48-kD MAP kinase in tobacco. Plant Cell 9(5):809–824PubMedCentralPubMedCrossRefGoogle Scholar
  61. Zhang S, Klessig DF (1998) Resistance gene N-mediated de novo synthesis and activation of a tobacco mitogen-activated protein kinase by tobacco mosaic virus infection. Proc Natl Acad Sci USA 95(13):7433–7438PubMedCentralPubMedCrossRefGoogle Scholar
  62. Zhang AY, Jiang MY, Zhang JH, Tan MP, Hu XL (2006) Mitogen-activated protein kinase is involved in abscisic acid-induced antioxidant defense and acts downstream of reactive oxygen species production in leaves of maize plants. Plant Physiol 141(2):475–487PubMedCentralPubMedCrossRefGoogle Scholar
  63. Zhang A, Zhang J, Ye N, Cao J, Tan M, Zhang J, Jiang M (2010) ZmMPK5 is required for the NADPH oxidase-mediated self-propagation of apoplastic H2O2 in brassinosteroid-induced antioxidant defence in leaves of maize. J Exp Bot 61(15):4399–4411PubMedCentralPubMedCrossRefGoogle Scholar
  64. Zimmerli L, Jakab G, Metraux JP, Mauch-Mani B (2000) Potentiation of pathogen-specific defense mechanisms in Arabidopsis by β-aminobutyric acid. Proc Natl Acad Sci USA 97(23):12920–12925PubMedCentralPubMedCrossRefGoogle Scholar
  65. Zipfel C (2009) Early molecular events in PAMP-triggered immunity. Curr Opin Plant Biol 12(4):414–420PubMedCrossRefGoogle Scholar
  66. Zipfel C, Kunze G, Chinchilla D, Caniard A, Jones JD, Boller T, Felix G (2006) Perception of the bacterial PAMP EF-Tu by the receptor EFR restricts Agrobacterium-mediated transformation. Cell 125(4):749–760PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Prasad Melvin
    • 1
  • S. Ashok Prabhu
    • 1
  • Mariswamy Veena
    • 1
  • Sekhar Shailasree
    • 2
  • Morten Petersen
    • 3
  • John Mundy
    • 3
  • Shekar H. Shetty
    • 1
  • K. Ramachandra Kini
    • 1
  1. 1.Department of Studies in Biotechnology, ManasagangotriUniversity of MysoreMysoreIndia
  2. 2.Institution of Excellence, Vijnana Bhavan, ManasagangotriUniversity of MysoreMysoreIndia
  3. 3.Department of BiologyUniversity of CopenhagenCopenhagenDenmark

Personalised recommendations