Plant Molecular Biology

, Volume 85, Issue 4–5, pp 365–379 | Cite as

Positive regulation of rice RING E3 ligase OsHIR1 in arsenic and cadmium uptakes

  • Sung Don Lim
  • Jin Gyu Hwang
  • A. Reum Han
  • Yong Chan Park
  • Chanhui Lee
  • Yong Sik Ok
  • Cheol Seong Jang


The metalloid arsenic (As) and the heavy metal cadmium (Cd) are ubiquitously found at low concentrations in the earth. High concentrations of these elements in the soil and crops are severely dangerous to human health. We attempted to retrieve the RING E3 ubiquitin ligase gene for regulating As and Cd uptakes via the ubiquitin 26S proteasome system. Semi-quantitative reverse transcription polymerase chain reaction was conducted for a total of 47 Oryza sativa RING finger protein (OsRFP) genes to assess their expression patterns when exposed to As and Cd treatments. We identified one gene Oryza sativa heavy metal induced RING E3 ligase 1 (OsHIR1), which was significantly upregulated with both treatments. A yeast hybrid screen and a bimolecular fluorescence complementation assay showed that OsHIR1 clearly interacts with 5 substrate proteins, including tonoplast intrinsic protein 4;1 (OsTIP4;1) in the plasma membrane. In addition, OsHIR1 strongly degraded the protein level of OsTIP4;1 via the ubiquitin 26S proteasome system. Heterogeneous overexpression of OsHIR1 in Arabidopsis exhibited As- and Cd-insensitive phenotypes and resulted in decreased As and Cd accumulation in the shoots and roots, relative to the control. Herein, we report the novel finding that the OsHIR1 E3 ligase positively regulates OsTIP4;1 related to As and Cd uptakes.


RING E3 ligase Ubiquitin 26S proteasome Heavy metal Protein degradation 



This work was supported by grants from the Next-Generation BioGreen 21 Program (Plant Molecular Breeding Center No. PJ009084) and the National Research Foundation of Korea funded by the Ministry of Education, Science, and Technology (2013R1A1A4A01011064) to C.S.J.

Supplementary material

11103_2014_190_MOESM1_ESM.pptx (4.2 mb)
Supplementary material 1 (PPTX 4291 kb)
11103_2014_190_MOESM2_ESM.xlsx (22 kb)
Supplementary material 2 (XLSX 21 kb)


  1. Catarecha P, Segura MD, Franco-Zorrilla JM, Garcia-Ponce B, Lanza M, Solano R, Paz-Ares J, Leyva A (2007) A mutant of the Arabidopsis phosphate transporter PHT1;1 displays enhanced arsenic accumulation. Plant Cell 19:1123–1133PubMedCentralCrossRefPubMedGoogle Scholar
  2. Chaumont F, Moshelion M, Daniels MJ (2005) Regulation of plant aquaporin activity. Biol Cell 97:749–764CrossRefPubMedGoogle Scholar
  3. Clemens S (2006) Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie 88:1707–1719CrossRefPubMedGoogle Scholar
  4. DalCorso G, Farinati S, Furini A (2010) Regulatory networks of cadmium stress in plants. Plant Signal Behav 5:663–667PubMedCentralCrossRefPubMedGoogle Scholar
  5. Flick K, Kaiser P (2012) Protein degradation and the stress response. Semin Cell Dev Biol 23:515–522PubMedCentralCrossRefPubMedGoogle Scholar
  6. Gao T, Wu Y, Zhang Y, Liu L, Ning Y, Wang D, Tong H, Chen S, Chu C, Xie Q (2011) OsSDIR1 overexpression greatly improves drought tolerance in transgenic rice. Plant Mol Biol 76:145–156CrossRefPubMedGoogle Scholar
  7. Gilbert-Diamond D, Cottingham KL, Gruber JF, Punshon T, Sayarath V, Gandolfi AJ, Baker ER, Jackson BP, Folt CL, Karagas MR (2011) Rice consumption contributes to arsenic exposure in US women. Proc Natl Acad Sci USA 108:20656–20660PubMedCentralCrossRefPubMedGoogle Scholar
  8. Hicke L, Dunn R (2003) Regulation of membrane protein transport by ubiquitin and ubiquitin-binding proteins. Annu Rev Cell Dev Biol 19:141–172CrossRefPubMedGoogle Scholar
  9. Horton P, Park KJ, Obayashi T, Fujita N, Harada H, Adams-Collier CJ, Nakai K (2007) WoLF PSORT: protein localization predictor. Nucleic Acids Res 35:W585–W587PubMedCentralCrossRefPubMedGoogle Scholar
  10. Kim BR, Nam HY, Kim SU, Kim SI, Chang YJ (2003) Normalization of reverse transcription quantitative-PCR with housekeeping genes in rice. Biotechnol Lett 25:1869–1872CrossRefPubMedGoogle Scholar
  11. Kohl M, Wiese S, Warscheid B (2011) Cytoscape: software for visualization and analysis of biological networks. Methods Mol Biol 696:291–303CrossRefPubMedGoogle Scholar
  12. Lee HK, Cho SK, Son O, Xu ZY, Hwang I, Kim WT (2009) Drought stress-induced Rma1H1, a RING membrane-anchor E3 ubiquitin ligase homolog, regulates aquaporin levels via ubiquitination in transgenic Arabidopsis plants. Plant Cell 21:622–641PubMedCentralCrossRefPubMedGoogle Scholar
  13. Li Y, Dhankher OP, Carreira L, Lee D, Chen A, Schroeder JI, Balish RS, Meagher RB (2004) Overexpression of phytochelatin synthase in Arabidopsis leads to enhanced arsenic tolerance and cadmium hypersensitivity. Plant Cell Physiol 45:1787–1797CrossRefPubMedGoogle Scholar
  14. Li GW, Peng YH, Yu X, Zhang MH, Cai WM, Sun WN, Su WA (2008) Transport functions and expression analysis of vacuolar membrane aquaporins in response to various stresses in rice. J Plant Physiol 165:1879–1888CrossRefPubMedGoogle Scholar
  15. Lim SD, Yim WC, Moon JC, Kim DS, Lee BM, Jang CS (2010) A gene family encoding RING finger proteins in rice: their expansion, expression diversity, and co-expressed genes. Plant Mol Biol 72:369–380CrossRefPubMedGoogle Scholar
  16. Lim SD, Cho HY, Park YC, Ham DJ, Lee JK, Jang CS (2013a) The rice RING finger E3 ligase, OsHCI1, drives nuclear export of multiple substrate proteins and its heterogeneous overexpression enhances acquired thermotolerance. J Exp Bot 64:2899–2914PubMedCentralCrossRefPubMedGoogle Scholar
  17. Lim SD, Hwang JG, Jung CG, Hwang SG, Moon JC, Jang CS (2013b) Comprehensive analysis of the rice RING E3 ligase family reveals their functional diversity in response to abiotic stress. DNA Res 20:299–314PubMedCentralCrossRefPubMedGoogle Scholar
  18. Liu L, Zhang Y, Tang S, Zhao Q, Zhang Z, Zhang H, Dong L, Guo H, Xie Q (2010) An efficient system to detect protein ubiquitination by agroinfiltration in Nicotiana benthamiana. Plant J 61:893–903CrossRefPubMedGoogle Scholar
  19. Ma JF, Yamaji N, Mitani N, Xu XY, Su YH, McGrath SP, Zhao FJ (2008) Transporters of arsenite in rice and their role in arsenic accumulation in rice grain. Proc Natl Acad Sci USA 105:9931–9935PubMedCentralCrossRefPubMedGoogle Scholar
  20. Maurel C, Verdoucq L, Luu DT, Santoni V (2008) Plant aquaporins: membrane channels with multiple integrated functions. Annu Rev Plant Biol 59:595–624CrossRefPubMedGoogle Scholar
  21. Meharg AA (2004) Arsenic in rice–understanding a new disaster for South-East Asia. Trends Plant Sci 9:415–417CrossRefPubMedGoogle Scholar
  22. Meharg AA, Jardine L (2003) Arsenite transport into paddy rice (Oryza sativa) roots. New Phytol 157:39–44CrossRefGoogle Scholar
  23. Meharg AA, Williams PN, Adomako E, Lawgali YY, Deacon C, Villada A, Cambell RC, Sun G, Zhu YG, Feldmann J, Raab A, Zhao FJ, Islam R, Hossain S, Yanai J (2009) Geographical variation in total and inorganic arsenic content of polished (white) rice. Environ Sci Technol 43:1612–1617CrossRefPubMedGoogle Scholar
  24. Mendoza-Cozatl DG, Jobe TO, Hauser F, Schroeder JI (2011) Long-distance transport, vacuolar sequestration, tolerance, and transcriptional responses induced by cadmium and arsenic. Curr Opin Plant Biol 14:554–562PubMedCentralCrossRefPubMedGoogle Scholar
  25. Nelson BK, Cai X, Nebenfuhr A (2007) A multicolored set of in vivo organelle markers for co-localization studies in Arabidopsis and other plants. Plant J 51:1126–1136CrossRefPubMedGoogle Scholar
  26. Ning Y, Jantasuriyarat C, Zhao Q, Zhang H, Chen S, Liu J, Liu L, Tang S, Park CH, Wang X, Liu X, Dai L, Xie Q, Wang GL (2011) The SINA E3 ligase OsDIS1 negatively regulates drought response in rice. Plant Physiol 157:242–255PubMedCentralCrossRefPubMedGoogle Scholar
  27. Nordstrom DK (2002) Public health. Worldwide occurrences of arsenic in ground water. Science 296:2143–2145CrossRefPubMedGoogle Scholar
  28. Qin F, Sakuma Y, Tran LSP, Maruyama K, Kidokoro S, Fujita Y, Fujita M, Umezawa T, Sawano Y, Miyazono KI, Tanokura M, Shinozaki K, Yamaguchi-Shinozaki K (2008) Arabidopsis DREB2A-interacting proteins function as RING E3 ligases and negatively regulate plant drought stress-responsive gene expression. Plant Cell 20:1693–1707PubMedCentralCrossRefPubMedGoogle Scholar
  29. Roos-Mattjus P, Sistonen L (2004) The ubiquitin-proteasome pathway. Ann Med 36:285–295CrossRefPubMedGoogle Scholar
  30. Saito C, Uemura T, Awai C, Tominaga M, Ebine K, Ito J, Ueda T, Abe H, Morita MT, Tasaka M, Nakano A (2011) The occurrence of ‘bulbs’, a complex configuration of the vacuolar membrane, is affected by mutations of vacuolar SNARE and phospholipase in Arabidopsis. Plant J 68:64–73CrossRefPubMedGoogle Scholar
  31. Sakurai J, Ishikawa F, Yamaguchi T, Uemura M, Maeshima M (2005) Identification of 33 rice aquaporin genes and analysis of their expression and function. Plant Cell Physiol 46:1568–1577CrossRefPubMedGoogle Scholar
  32. Smalle J, Vierstra RD (2004) The ubiquitin 26S proteasome proteolytic pathway. Annu Rev Plant Biol 55:555–590CrossRefPubMedGoogle Scholar
  33. Smith AH, Lopipero PA, Bates MN, Steinmaus CM (2002) Public health. Arsenic epidemiology and drinking water standards. Science 296:2145–2146CrossRefPubMedGoogle Scholar
  34. Song WY, Park J, Mendoza-Cozatl DG, Suter-Grotemeyer M, Shim D, Hortensteiner S, Geisler M, Weder B, Rea PA, Rentsch D, Schroeder JI, Lee Y, Martinoia E (2010) Arsenic tolerance in Arabidopsis is mediated by two ABCC-type phytochelatin transporters. Proc Natl Acad Sci USA 107:21187–21192PubMedCentralCrossRefPubMedGoogle Scholar
  35. Stone SL, Hauksdottir H, Troy A, Herschleb J, Kraft E, Callis J (2005) Functional analysis of the RING-type ubiquitin ligase family of Arabidopsis. Plant Physiol 137:13–30PubMedCentralCrossRefPubMedGoogle Scholar
  36. Taiz L (1992) The plant vacuole. J Exp Biol 172:113–122PubMedGoogle Scholar
  37. Tiwari M, Sharma D, Dwivedi S, Singh M, Tripathi RD, Trivedi PK (2014) Expression in Arabidopsis and cellular localization reveal involvement of rice NRAMP, OsNRAMP1, in arsenic transport and tolerance. Plant Cell Environ 37:140–152Google Scholar
  38. Verbruggen N, Hermans C, Schat H (2009) Mechanisms to cope with arsenic or cadmium excess in plants. Curr Opin Plant Biol 12:364–372CrossRefPubMedGoogle Scholar
  39. Vierstra RD (2009) The ubiquitin-26S proteasome system at the nexus of plant biology. Nat Rev Mol Cell Biol 10:385–397CrossRefPubMedGoogle Scholar
  40. Williams PN, Villada A, Deacon C, Raab A, Figuerola J, Green AJ, Feldmann J, Meharg AA (2007) Greatly enhanced arsenic shoot assimilation in rice leads to elevated grain levels compared to wheat and barley. Environ Sci Technol 41:6854–6859CrossRefPubMedGoogle Scholar
  41. Williams PN, Lei M, Sun G, Huang Q, Lu Y, Deacon C, Meharg AA, Zhu YG (2009) Occurrence and partitioning of cadmium, arsenic and lead in mine impacted paddy rice: Hunan, China. Environ Sci Technol 43:637–642CrossRefPubMedGoogle Scholar
  42. Zhang XR, Henriques R, Lin SS, Niu QW, Chua NH (2006) Agrobacterium-mediated transformation of Arabidopsis thaliana using the floral dip method. Nat Protoc 1:641–646CrossRefPubMedGoogle Scholar
  43. Zhang Y, Yang C, Li Y, Zheng N, Chen H, Zhao Q, Gao T, Guo H, Xie Q (2007) SDIR1 is a RING finger E3 ligase that positively regulates stress-responsive abscisic acid signaling in Arabidopsis. Plant Cell 19:1912–1929PubMedCentralCrossRefPubMedGoogle Scholar
  44. Zhao FJ, Ma JF, Meharg AA, McGrath SP (2009) Arsenic uptake and metabolism in plants. New Phytol 181:777–794CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Sung Don Lim
    • 1
  • Jin Gyu Hwang
    • 1
  • A. Reum Han
    • 1
  • Yong Chan Park
    • 1
  • Chanhui Lee
    • 2
  • Yong Sik Ok
    • 3
  • Cheol Seong Jang
    • 1
  1. 1.Plant Genomics Lab, Department of Applied Plant SciencesKangwon National UniversityChuncheonRepublic of Korea
  2. 2.Department of Plant Environmental New ResourcesKyungHee UniversityYonginRepublic of Korea
  3. 3.Department of Biological EnvironmentKangwon National UniversityChuncheonRepublic of Korea

Personalised recommendations