Plant Molecular Biology

, Volume 84, Issue 3, pp 345–357 | Cite as

Expression of Terpenoids 1, a glandular trichome-specific transcription factor from tomato that activates the terpene synthase 5 promoter

  • Eleni A. Spyropoulou
  • Michel A. Haring
  • Robert C. Schuurink


Terpene biosynthesis in tomato glandular trichomes has been well studied, with most if not all terpene synthases (TPSs) being identified. However, transcription factors (TFs) that regulate TPSs have not yet been discovered from tomato. In order to unravel the transcriptional regulation of the Solanum lycopersicum linalool synthase (SlMTS1, recently renamed SlTPS5) gene in glandular trichomes, we functionally dissected its promoter. A 207 bp fragment containing the minimal promoter and the 5′UTR appeared to be sufficient for trichome-specific expression in transgenic plants. Yeast-one-hybrid screens with this fragment identified a glandular trichome-specific transcription factor, designated Expression of Terpenoids 1 (SlEOT1). SlEOT1 is a member of a conserved family of TFs that includes the Arabidopsis Stylish 1 (AtSTY1) and Short Internode (AtSHI) genes. The EOT1 protein localized to the nucleus and specifically transactivated the SlTPS5 promoter in Nicotiana benthamiana leaves.


Glandular trichomes Promoter Terpene biosynthesis Tomato Transcription factor 



We thank Mattijs Bliek (Vrije Universiteit, Amsterdam) for kindly providing the yeast strain PJ69-4A, Carlos Galvan-Ampudia, Ronald Breedijk and Maria Koini for help with confocal imaging constructs and microscopy, Kai Ament for constructing the trichome cDNA library, Juan M. Alba-Cano for help with the statistical analyses and Harold Lemeris, Ludeck Tikovsky and Thijs Hendrix for the excellent care of the tomato plants. This work was supported by KeyGene and the Technological Top Institute-Green Genetics Grant 1C002RP.

Supplementary material

11103_2013_142_MOESM1_ESM.doc (29 kb)
Supplementary material 1 (DOC 29 kb)
11103_2013_142_MOESM2_ESM.pdf (2.1 mb)
Supplementary material 2 (PDF 2118 kb)
11103_2013_142_MOESM3_ESM.pdf (703 kb)
Supplementary material 3 (PDF 702 kb)


  1. Ahuja I, Kissen R, Bones AM (2012) Phytoalexins in defense against pathogens. Trends Plant Sci 17:73–90PubMedCrossRefGoogle Scholar
  2. Arimura G, Ozawa R, Shimoda T, Nishioka T, Boland W, Takabayashi J (2000) Herbivory-induced volatiles elicit defence genes in lima bean leaves. Nature 406:512–515PubMedCrossRefGoogle Scholar
  3. Arimura G, Huber DP, Bohlmann J (2004a) Forest tent caterpillars Malacosoma disstria induce local and systemic diurnal emissions of terpenoid volatiles in hybrid poplar Populus trichocarpa x deltoides: cDNA cloning, functional characterization, and patterns of gene expression of (−)-germacrene D synthase, PtdTPS1. Plant J 37:603–616PubMedCrossRefGoogle Scholar
  4. Arimura G, Ozawa R, Kugimiya S, Takabayashi J, Bohlmann J (2004b) Herbivore-induced defense response in a model legume. Two-spotted spider mites induce emission of (E)-beta-ocimene and transcript accumulation of (E)-beta-ocimene synthase in Lotus japonicus. Plant Physiol 135:1976–1983PubMedCentralPubMedCrossRefGoogle Scholar
  5. Balkema-Boomstra AG, Zijlstra S, Verstappen FW, Inggamer H, Mercke PE, Jongsma MA, Bouwmeester HJ (2003) Role of cucurbitacin C in resistance to spider mite (Tetranychus urticae) in cucumber (Cucumis sativus L.). J Chem Ecol 29:225–235PubMedCrossRefGoogle Scholar
  6. Bleeker PM, Mirabella R, Diergaarde PJ, Vandoorn A, Tissier A, Kant MR, Prins M, de Vos M, Haring MA, Schuurink RC (2012) Improved herbivore resistance in cultivated tomato with the sesquiterpene biosynthetic pathway from a wild relative. Proc Natl Acad Sci USA 109:20124–20129PubMedCrossRefGoogle Scholar
  7. Boulikas T (1994) Putative nuclear localization signals (NLS) in protein transcription factors. J Cell Biochem 55:32–58PubMedCrossRefGoogle Scholar
  8. Cortina C, Culianez-Macia FA (2004) Tomato transformation and transgenic plant production. Plant Cell Tiss Org 76:269–275CrossRefGoogle Scholar
  9. Courey AJ, Tjian R (1988) Analysis of Sp1 in vivo reveals multiple transcriptional domains, including a novel glutamine-rich activation motif. Cell 55:887–898PubMedCrossRefGoogle Scholar
  10. De Geyter N, Gholami A, Goormachtig S, Goossens A (2012) Transcriptional machineries in jasmonate-elicited plant secondary metabolism. Trends Plant Sci 17:349–359PubMedCrossRefGoogle Scholar
  11. Dobi KC, Winston F (2007) Analysis of transcriptional activation at a distance in Saccharomyces cerevisiae. Mol Cell Biol 27:5575–5586PubMedCentralPubMedCrossRefGoogle Scholar
  12. Eklund DM, Staldal V, Valsecchi I, Cierlik I, Eriksson C, Hiratsu K, Ohme-Takagi M, Sundstrom JF, Thelander M, Ezcurra I, Sundberg E (2010a) The Arabidopsis thaliana STYLISH1 protein acts as a transcriptional activator regulating auxin biosynthesis. Plant Cell 22:349–363PubMedCentralPubMedCrossRefGoogle Scholar
  13. Eklund DM, Thelander M, Landberg K, Staldal V, Nilsson A, Johansson M, Valsecchi I, Pederson ER, Kowalczyk M, Ljung K, Ronne H, Sundberg E (2010b) Homologues of the Arabidopsis thaliana SHI/STY/LRP1 genes control auxin biosynthesis and affect growth and development in the moss Physcomitrella patens. Development 137:1275–1284PubMedCrossRefGoogle Scholar
  14. Ennajdaoui H, Vachon G, Giacalone C, Besse I, Sallaud C, Herzog M, Tissier A (2010) Trichome specific expression of the tobacco (Nicotiana sylvestris) cembratrien-ol synthase genes is controlled by both activating and repressing cis-regions. Plant Mol Biol 73:673–685PubMedCrossRefGoogle Scholar
  15. Falara V, Akhtar TA, Nguyen TT, Spyropoulou EA, Bleeker PM, Schauvinhold I, Matsuba Y, Bonini ME, Schilmiller AL, Last RL, Schuurink RC, Pichersky E (2011) The tomato terpene synthase gene family. Plant Physiol 157:770–789PubMedCentralPubMedCrossRefGoogle Scholar
  16. Flores-Perez U, Perez-Gil J, Closa M, Wright LP, Botella-Pavia P, Phillips MA, Ferrer A, Gershenzon J, Rodriguez-Concepcion M (2010) Pleiotropic regulatory locus 1 (PRL1) integrates the regulation of sugar responses with isoprenoid metabolism in Arabidopsis. Mol Plant 3:101–112PubMedCrossRefGoogle Scholar
  17. Freemont PS (1993) The RING finger. A novel protein sequence motif related to the zinc finger. Ann N Y Acad Sci 684:174–192PubMedCrossRefGoogle Scholar
  18. Fridborg I, Kuusk S, Robertson M, Sundberg E (2001) The Arabidopsis protein SHI represses gibberellin responses in Arabidopsis and barley. Plant Physiol 127:937–948PubMedCentralPubMedCrossRefGoogle Scholar
  19. Giniger E, Varnum SM, Ptashne M (1985) Specific DNA binding of GAL4, a positive regulatory protein of yeast. Cell 40:767–774PubMedCrossRefGoogle Scholar
  20. Gomez SK, Cox MM, Bede JC, Inoue K, Alborn HT, Tumlinson JH, Korth KL (2005) Lepidopteran herbivory and oral factors induce transcripts encoding novel terpene synthases in Medicago truncatula. Arch Insect Biochem Physiol 58:114–127PubMedCrossRefGoogle Scholar
  21. Grebenok RJ, Pierson E, Lambert GM, Gong FC, Afonso CL, Haldeman-Cahill R, Carrington JC, Galbraith DW (1997) Green-fluorescent protein fusions for efficient characterization of nuclear targeting. Plant J 11:573–586PubMedCrossRefGoogle Scholar
  22. Heiling S, Schuman MC, Schoettner M, Mukerjee P, Berger B, Schneider B, Jassbi AR, Baldwin IT (2010) Jasmonate and ppHsystemin regulate key Malonylation steps in the biosynthesis of 17-Hydroxygeranyllinalool Diterpene Glycosides, an abundant and effective direct defense against herbivores in Nicotiana attenuata. Plant Cell 22:273–292PubMedCentralPubMedCrossRefGoogle Scholar
  23. Hong GJ, Xue XY, Mao YB, Wang LJ, Chen XY (2012) Arabidopsis MYC2 interacts with DELLA proteins in regulating sesquiterpene synthase gene expression. Plant Cell 24(6):2635–2648Google Scholar
  24. Ishiguro S, Kawai-Oda A, Ueda J, Nishida I, Okada K (2001) The DEFECTIVE IN ANTHER DEHISCIENCE gene encodes a novel phospholipase A1 catalyzing the initial step of jasmonic acid biosynthesis, which synchronizes pollen maturation, anther dehiscence, and flower opening in Arabidopsis. Plant Cell 13:2191–2209PubMedCentralPubMedGoogle Scholar
  25. Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907PubMedGoogle Scholar
  26. Kim SG, Lee S, Kim YS, Yun DJ, Woo JC, Park CM (2010) Activation tagging of an Arabidopsis SHI-RELATED SEQUENCE gene produces abnormal anther dehiscence and floral development. Plant Mol Biol 74:337–351PubMedCrossRefGoogle Scholar
  27. Kuusk S, Sohlberg JJ, Long JA, Fridborg I, Sundberg E (2002) STY1 and STY2 promote the formation of apical tissues during Arabidopsis gynoecium development. Development 129:4707–4717PubMedGoogle Scholar
  28. Lange BM, Rujan T, Martin W, Croteau R (2000) Isoprenoid biosynthesis: the evolution of two ancient and distinct pathways across genomes. Proc Natl Acad Sci USA 97:13172–13177PubMedCrossRefGoogle Scholar
  29. Langenheim JH (1994) Higher-plant terpenoids: a phytocentric overview of their ecological roles. J Chem Ecol 20:1223–1280PubMedCrossRefGoogle Scholar
  30. Lovering R, Hanson IM, Borden KL, Martin S, O’Reilly NJ, Evan GI, Rahman D, Pappin DJ, Trowsdale J, Freemont PS (1993) Identification and preliminary characterization of a protein motif related to the zinc finger. Proc Natl Acad Sci USA 90:2112–2116PubMedCrossRefGoogle Scholar
  31. Lu X, Zhang L, Zhang F, Jiang W, Shen Q, Zhang L, Lv Z, Wang G, Tang K (2013) AaORA, a trichome-specific AP2/ERF transcription factor of Artemisia annua, is a positive regulator in the artemisinin biosynthetic pathway and in disease resistance to Botrytis cinerea. New Phytol 198(4):1191–1202PubMedCrossRefGoogle Scholar
  32. Luo P, Wang YH, Wang GD, Essenberg M, Chen XY (2001) Molecular cloning and functional identification of (+)-delta-cadinene-8-hydroxylase, a cytochrome P450 mono-oxygenase (CYP706B1) of cotton sesquiterpene biosynthesis. Plant J 28:95–104PubMedCrossRefGoogle Scholar
  33. Ma D, Pu G, Lei C, Ma L, Wang H, Guo Y, Chen J, Du Z, Wang H, Li G, Ye H, Liu B (2009) Isolation and characterization of AaWRKY1, an Artemisia annua transcription factor that regulates the amorpha-4,11-diene synthase gene, a key gene of artemisinin biosynthesis. Plant Cell Physiol 50:2146–2161PubMedCrossRefGoogle Scholar
  34. Matsuba Y, Nguyen TT, Wiegert K, Falara V, Gonzales-Vigil E, Leong B, Schafer P, Kudrna D, Wing RA, Bolger AM, Usadel B, Tissier A, Fernie AR, Barry CS, Pichersky E (2013) Evolution of a complex locus for terpene biosynthesis in solanum. Plant Cell. doi: 10.1105/tpc.113.111013 PubMedCentralPubMedGoogle Scholar
  35. Mercke P, Kappers IF, Verstappen FW, Vorst O, Dicke M, Bouwmeester HJ (2004) Combined transcript and metabolite analysis reveals genes involved in spider mite induced volatile formation in cucumber plants. Plant Physiol 135:2012–2024PubMedCentralPubMedCrossRefGoogle Scholar
  36. Nagai T, Ibata K, Park ES, Kubota M, Mikoshiba K, Miyawaki A (2002) A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications. Nat Biotechnol 20:87–90PubMedCrossRefGoogle Scholar
  37. Navia-Gine WG, Yuan JS, Mauromoustakos A, Murphy JB, Chen F, Korth KL (2009) Medicago truncatula (E)-beta-ocimene synthase is induced by insect herbivory with corresponding increases in emission of volatile ocimene. Plant Physiol Biochem 47:416–425PubMedCrossRefGoogle Scholar
  38. Paetzold H, Garms S, Bartram S, Wieczorek J, Uros-Gracia EM, Rodriguez-Concepcion M, Boland W, Strack D, Hause B, Walter MH (2010) The isogene 1-deoxy-d-xylulose 5-phosphate synthase 2 controls isoprenoid profiles, precursor pathway allocation, and density of tomato trichomes. Mol Plant 3:904–916PubMedCrossRefGoogle Scholar
  39. Pichersky E, Gershenzon J (2002) The formation and function of plant volatiles: perfumes for pollinator attraction and defense. Curr Opin Plant Biol 5:237–243PubMedCrossRefGoogle Scholar
  40. Pichersky E, Lewinsohn E, Croteau R (1995) Purification and characterization of S-linalool synthase, an enzyme involved in the production of floral scent in Clarkia breweri. Arch Biochem Biophys 316:803–807PubMedCrossRefGoogle Scholar
  41. Pre M, Atallah M, Champion A, De Vos M, Pieterse CM, Memelink J (2008) The AP2/ERF-domain transcription factor ORA59 integrates jasmonic acid and ethylene signals in plant defense. Plant Physiol 147:1347–1357PubMedCentralPubMedCrossRefGoogle Scholar
  42. Sanchez-Hernandez C, Lopez MG, Delano-Frier JP (2006) Reduced levels of volatile emissions in jasmonate-deficient spr2 tomato mutants favour oviposition by insect herbivores. Plant Cell Environ 29:546–557PubMedCrossRefGoogle Scholar
  43. Schnee C, Kollner TG, Gershenzon J, Degenhardt J (2002) The maize gene terpene synthase 1 encodes a sesquiterpene synthase catalyzing the formation of (E)-beta-farnesene, (E)-nerolidol, and (E, E)-farnesol after herbivore damage. Plant Physiol 130:2049–2060PubMedCentralPubMedCrossRefGoogle Scholar
  44. Schnee C, Kollner TG, Held M, Turlings TC, Gershenzon J, Degenhardt J (2006) The products of a single maize sesquiterpene synthase form a volatile defense signal that attracts natural enemies of maize herbivores. Proc Natl Acad Sci USA 103:1129–1134PubMedCrossRefGoogle Scholar
  45. Skibbe M, Qu N, Galis I, Baldwin IT (2008) Induced plant defenses in the natural environment: Nicotiana attenuata WRKY3 and WRKY6 coordinate responses to herbivory. Plant Cell 20:1984–2000PubMedCentralPubMedCrossRefGoogle Scholar
  46. Smith DL, Fedoroff NV (1995) LRP1, a gene expressed in lateral and adventitious root primordia of Arabidopsis. Plant Cell 7:735–745PubMedCentralPubMedGoogle Scholar
  47. Sohlberg JJ, Myrenas M, Kuusk S, Lagercrantz U, Kowalczyk M, Sandberg G, Sundberg E (2006) STY1 regulates auxin homeostasis and affects apical-basal patterning of the Arabidopsis gynoecium. Plant J 47:112–123PubMedCrossRefGoogle Scholar
  48. Son JS, Chang YJ, Choi YD, Kim SU (1998) Role of jasmonic acid in biotransformation of (−)-isopiperitenone in suspension cell culture of Mentha piperita. Mol Cells 8:366–369PubMedGoogle Scholar
  49. Suttipanta N, Pattanaik S, Kulshrestha M, Patra B, Singh SK, Yuan L (2011) The transcription factor CrWRKY1 positively regulates the terpenoid indole alkaloid biosynthesis in Catharanthus roseus. Plant Physiol 157:2081–2093PubMedCentralPubMedCrossRefGoogle Scholar
  50. The Tomato Genome Consortium (2012) The tomato genome sequence provides insights into fleshy fruit evolution. Nature 485:635–641CrossRefGoogle Scholar
  51. Tissier A (2012) Glandular trichomes: what comes after expressed sequence tags? Plant J 70:51–68PubMedCrossRefGoogle Scholar
  52. van der Fits L, Memelink J (2000) ORCA3, a jasmonate-responsive transcriptional regulator of plant primary and secondary metabolism. Science 289:295–297PubMedCrossRefGoogle Scholar
  53. van Engelen FA, Molthoff JW, Conner AJ, Nap JP, Pereira A, Stiekema WJ (1995) pBINPLUS: an improved plant transformation vector based on pBIN19. Transgenic Res 4:288–290PubMedCrossRefGoogle Scholar
  54. van Leeuwen W, Hagendoorn MJM, Ruttink T, van Poecke R, van der Plas LHW, van der Krol AR (2000) The use of the luciferase reporter system for in planta gene expression studies. Plant Mol Biol Rep 18:143a–143tCrossRefGoogle Scholar
  55. Van Moerkercke A, Haring MA, Schuurink RC (2011) The transcription factor EMISSION OF BENZENOIDS II activates the MYB ODORANT1 promoter at a MYB binding site specific for fragrant petunias. Plant J 67:917–928PubMedCrossRefGoogle Scholar
  56. van Schie CC, Haring MA, Schuurink RC (2007) Tomato linalool synthase is induced in trichomes by jasmonic acid. Plant Mol Biol 64:251–263PubMedCentralPubMedCrossRefGoogle Scholar
  57. Verweij W, Spelt C, Di Sansebastiano GP, Vermeer J, Reale L, Ferranti F, Koes R, Quattrocchio F (2008) An H+ P-ATPase on the tonoplast determines vacuolar pH and flower colour. Nat Cell Biol 10:1456–1462PubMedCrossRefGoogle Scholar
  58. Vom Endt D, Soares e SM, Kijne JW, Pasquali G, Memelink J (2007) Identification of a bipartite jasmonate-responsive promoter element in the Catharanthus roseus ORCA3 transcription factor gene that interacts specifically with AT-Hook DNA-binding proteins. Plant Physiol 144:1680–1689 PubMedCentralPubMedCrossRefGoogle Scholar
  59. Xu YH, Wang JW, Wang S, Wang JY, Chen XY (2004) Characterization of GaWRKY1, a cotton transcription factor that regulates the sesquiterpene synthase gene (+)-delta-cadinene synthase-A. Plant Physiol 135:507–515PubMedCentralPubMedCrossRefGoogle Scholar
  60. Yu ZX, Li JX, Yang CQ, Hu WL, Wang LJ, Chen XY (2012) The jasmonate-responsive AP2/ERF transcription factors AaERF1 and AaERF2 positively regulate artemisinin biosynthesis in Artemisia annua L. Mol Plant 5(2):353–365Google Scholar
  61. Zawaski C, Kadmiel M, Ma C, Gai Y, Jiang XN, Strauss SH, Busov VB (2011) SHORT INTERNODES-like genes regulate shoot growth and xylem proliferation in Populus. New Phytol 191:678–691PubMedCrossRefGoogle Scholar
  62. Zhang H, Hedhili S, Montiel G, Zhang Y, Chatel G, Pre M, Gantet P, Memelink J (2011) The basic helix-loop-helix transcription factor CrMYC2 controls the jasmonate-responsive expression of the ORCA genes that regulate alkaloid biosynthesis in Catharanthus roseus. Plant J 67:61–71PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Eleni A. Spyropoulou
    • 1
  • Michel A. Haring
    • 1
  • Robert C. Schuurink
    • 1
  1. 1.Department of Plant Physiology, Swammerdam Institute for Life SciencesUniversity of AmsterdamAmsterdamThe Netherlands

Personalised recommendations