Plant Molecular Biology

, Volume 84, Issue 4–5, pp 399–413 | Cite as

Characterization of gibberellin-signalling elements during plum fruit ontogeny defines the essentiality of gibberellin in fruit development

  • Islam El-Sharkawy
  • Sherif Sherif
  • Walid El Kayal
  • Abdullah Mahboob
  • Kamal Abubaker
  • Pratibha Ravindran
  • Pavithra A. Jyothi-Prakash
  • Prakash P. Kumar
  • Subramanian Jayasankar


Fruit growth is a coordinated, complex interaction of cell division, differentiation and expansion. Gibberellin (GA) involvement in the reproductive events is an important aspect of GA effects. Perennial fruit-trees such as plum (Prunus salicina L.) have distinct features that are economically important and provide opportunities to dissect specific GA mechanisms. Currently, very little is known on the molecular mechanism(s) mediating GA effects on fruit development. Determination of bioactive GA content during plum fruit ontogeny revealed that GA1 and GA4 are critical for fruit growth and development. Further, characterization of several genes involved in GA-signalling showed that their transcriptional regulation are generally GA-dependent, confirming their involvement in GA-signalling. Based on these results, a model is presented elucidating how the potential association between GA and other hormones may contribute to fruit development. PslGID1 proteins structure, Y2H and BiFC assays indicated that plum GA-receptors can form a complex with AtDELLA-repressors in a GA-dependent manner. Moreover, phenotypical-, molecular- and GA-analyses of various Arabidopsis backgrounds ectopically expressing PslGID1 sequences provide evidence on their role as active GA-signalling components that mediate GA-responsiveness. Our findings support the critical contribution of GA alone or in association with other hormones in mediating plum fruit growth and development.


Fruit development GA content GA-signalling Plum PslGID1/DELLA interaction Hormones cross-talk 



We thank Dr. Stephen G. Thomas for providing gid1a-1/gid1c-1 double mutant, Dr. Stanton Gelvin for providing the EYFP vectors. We also thank the Ontario Ministry of Agriculture, Food and Rural Affairs (OMAFRA) and Early Researchers Award of the Ontario Ministry of Innovation for financial assistance. We thank Dr. Bouzayen for help with subcellular localization experiment.

Supplementary material

11103_2013_139_MOESM1_ESM.docx (1.8 mb)
Supplementary material 1 (DOCX 1836 kb)


  1. Achard P, Vriezen WH, Van Der Straeten D, Harberd NP (2003) Ethylene regulates Arabidopsis development via the modulation of DELLA protein growth repressor function. Plant Cell 15:2816–2825PubMedCentralCrossRefPubMedGoogle Scholar
  2. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W et al (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402PubMedCentralCrossRefPubMedGoogle Scholar
  3. Ariizumi T, Murase K, Sun TP, Steber CM (2008) Proteolysis-independent downregulation of DELLA repression in Arabidopsis by the gibberellin receptor GIBBERELLIN INSENSITIVE DWARF1. Plant Cell 20:2447–2459PubMedCentralCrossRefPubMedGoogle Scholar
  4. Augustí M, Almela V, Andreu I, Juan M, Zacarias L (1999) Synthetic auxin 3,5,6-TPA promotes fruit development and climacteric in Prunus persica L. Batsch. J Hortic Sci Biotech 74:556–560Google Scholar
  5. Baker NA, Sept D, Joseph S, Holst MJ, McCammon JA (2001) Electrostatics of nanosystems: application to microtubules and the ribosome. Proc Natl Acad Sci USA 98:10037–10041CrossRefPubMedGoogle Scholar
  6. Biemelt S, Tschiersch H, Sonnewald U (2004) Impact of altered gibberellin metabolism on biomass accumulation, lignin biosynthesis, and photosynthesis in transgenic tobacco plants. Plant Physiol 135:254–265PubMedCentralCrossRefPubMedGoogle Scholar
  7. Bjorklund S, Antti H, Uddestrand I, Moritz T, Sundberg B (2007) Cross-talk between gibberellin and auxin in development of Populus wood: gibberellin stimulates polar auxin transport and has a common transcriptome with auxin. Plant J 52:499–511CrossRefPubMedGoogle Scholar
  8. Bukovac MJ, Nakagawa S (1967) Comparative potency of gibberellins in inducing parthenocarpic fruit growth in Malus sylvestris Mill. Experientia 23:865CrossRefPubMedGoogle Scholar
  9. Bukvoac MJ (1963) Induction of parthenocarpic growth of apple fruits with gibberellins A3 and A4. Bot Gaz 124:191–195CrossRefGoogle Scholar
  10. Bukvoac MJ, Yuda E (1979) Endogenous plant growth substances in developing fruit of Prunus cerasus L. Plant Physiol 63:129–132CrossRefGoogle Scholar
  11. Cheng H, Qin L, Lee S, Fu X, Richards DE, Cao D et al (2004) Gibberellin regulates Arabidopsis floral development via suppression of DELLA protein function. Development 131:1055–1064CrossRefPubMedGoogle Scholar
  12. Crane J (1964) Growth substances in fruit setting and development. Annu Rev Plant Physiol 15:303–326CrossRefGoogle Scholar
  13. Csukasi F, Osorio S, Gutierrez JR, Kitamura J, Giavalisco P, Nakajima M et al (2011) Gibberellin biosynthesis and signalling during development of the strawberry receptacle. New Phytol 191:376–390CrossRefPubMedGoogle Scholar
  14. de Jong M, Mariani C, Vriezen WH (2009) The role of auxin and gibberellin in tomato fruit set. J Exp Bot 60:1523–1532CrossRefPubMedGoogle Scholar
  15. Dill A, Sun TP (2001) Synergistic de-repression of gibberellin signalling by removing RGA and GAI function in Arabidopsis thaliana. Genetics 159:777–785PubMedGoogle Scholar
  16. Dunberg A, Odén PC (1983) Gibberellins and conifers. In: Crozier A (ed) The biochemistry and physiology of gibberellins. Praeger, New York, pp 221–295Google Scholar
  17. El-Sharkawy I, Kim WS, El-Kereamy A, Jayasankar S, Svircev AM, Brown DCW (2007) Isolation and characterization of four ethylene signal transduction elements in plums (Prunus salicina L.). J Exp Bot 58:3631–3643CrossRefPubMedGoogle Scholar
  18. El-Sharkawy I, Kim WS, Jayasankar S, Svircev AM, Brown DCW (2008) Differential regulation of four members of ACC synthase gene family in plum. J Exp Bot 59:2009–2027CrossRefPubMedGoogle Scholar
  19. El-Sharkawy I, Sherif S, Mila I, Bouzayen M, Jayasankar S (2009) Molecular characterization of seven genes encoding ethylene-responsive transcriptional factors during plum fruit development and ripening. J Exp Bot 60:907–922CrossRefPubMedGoogle Scholar
  20. El-Sharkawy I, Mila I, Bouzayen M, Jayasankar S (2010) Regulation of two germin-like protein genes during plum fruit development. J Exp Bot 61:1761–1770CrossRefPubMedGoogle Scholar
  21. El-Sharkawy I, Sherif S, Mahboob A, Abubaker K, Bouzayen M, Jayasankar S (2012a) Expression of auxin-binding protein1 during plum fruit ontogeny supports the potential role of auxin in initiating and enhancing climacteric ripening. Plant Cell Rep 31:1911–1921CrossRefPubMedGoogle Scholar
  22. El-Sharkawy I, El Kayal W, Prasath D, Fernández H, Bouzayen M, Svircev AM et al (2012b) Identification and genetic characterization of a gibberellin 2-oxidase gene that controls tree stature and reproductive growth in plum. J Exp Bot 63:1225–1239CrossRefPubMedGoogle Scholar
  23. Fleet CM, Sun TP (2005) A DELLAcate balance: the role of gibberellin in plant morphogenesis. Curr Opin Plant Biol 8:77–85CrossRefPubMedGoogle Scholar
  24. Gillaspy G, Ben-David H, Gruissem W (1993) Fruits: a developmental perspective. Plant Cell 5:1439–1451PubMedCentralPubMedGoogle Scholar
  25. Griffiths J, Murase K, Rieu I, Zentella R, Zhang ZL, Powers SJ et al (2006) Genetic characterization and functional analysis of the GID1 gibberellin receptors in Arabidopsis. Plant Cell 18:3399–3414PubMedCentralCrossRefPubMedGoogle Scholar
  26. Harberd NP, Belfield E, Yasumura Y (2009) The angiosperm gibberellin-GID1-DELLA growth regulatory mechanism: how an “Inhibitor of an inhibitor” enables flexible response to fluctuating environments. Plant Cell 21:1328–1339PubMedCentralCrossRefPubMedGoogle Scholar
  27. Hedden P (2008) Plant biology: gibberellins close the lid. Nature 456:455–456CrossRefPubMedGoogle Scholar
  28. Higo K, Ugawa Y, Iwamoto M, Korenaga T (1999) Plant cis-acting regulatory DNA elements (PLACE) database. Nucleic Acids Res 27:297–300PubMedCentralCrossRefPubMedGoogle Scholar
  29. Jackson DI (1968) Gibberellin in the growth of peach and apricot fruits. Aust J Biol Sci 21:209–215Google Scholar
  30. Lee LY, Fang MJ, Kuang LY, Gelvin SB (2008) Vectors for multi-color bimolecular fluorescence complementation to investigate protein–protein interactions in living plant cells. Plant Meth 4:24CrossRefGoogle Scholar
  31. Lodhi F, Bradley MV, Crane JC (1969) Auxins and gibberellin-like substances in parthenocarpic and non-parthenocarpic syconia of Ficus carica L., cv. King. Plant Physiol 44:555–561PubMedCentralCrossRefPubMedGoogle Scholar
  32. Mesejo C, Yuste R, Martínez-Fuentes A, Reig C, Iglesias DJ, Primo-Millo E, Agustí M (2013) Self-pollination and parthenocarpic ability in developing ovaries of self-incompatible Clementine mandarins (Citrus clementina). Physiol Plant 148:87–96CrossRefPubMedGoogle Scholar
  33. Miller AN, Walsh CS, Cohen JD (1987) Measurement of indole-3-acetic acid in peach fruits (Prunus persica L. Batsch cv. Redhaven) during development. Plant Physiol 84:491–494PubMedCentralCrossRefPubMedGoogle Scholar
  34. Nakajima M, Shimada A, Takashi Y, Kim YC, Park SH, Ueguchi-Tanaka M et al (2006) Identification and characterization of Arabidopsis gibberellin receptors. Plant J 46:880–889CrossRefPubMedGoogle Scholar
  35. Ngo P, Ozga JA, Reinecke DM (2002) Specificity of auxin regulation of gibberellin 20-oxidase gene expression in pea pericarp. Plant Mol Biol 49:439–448CrossRefPubMedGoogle Scholar
  36. Nitsch JP (1970) Hormonal factors in growth and development. In: Hulme AC (ed) The biochemistry of fruits and their products. Academic Press, London, New York, pp 427–472Google Scholar
  37. Ogawa M, Hanada A, Yamauchi Y, Kuwahara A, Kamiya Y, Yamaguchi S (2003) Gibberellin biosynthesis and response during Arabidopsis seed germination. Plant Cell 15:1591–1604PubMedCentralCrossRefPubMedGoogle Scholar
  38. Ross JJ, O’Neill DP, Wolbang CM, Symons GM, Reid JB (2002) Auxin-gibberellin interactions and their role in plant growth. J Plant Growth Regul 20:346–353Google Scholar
  39. Seo M, Jikumaru Y, Kamiya Y (2011) Profiling of hormones and related metabolites in seed dormancy and germination studies. Methods Mol Biol 773:99–111CrossRefPubMedGoogle Scholar
  40. Serrani JC, Sanjuán R, Ruiz-Rivero O, Fos M, García Martínez JL (2007) Gibberellin regulation of fruit set and growth in tomato. Plant Physiol 145:246–257PubMedCentralCrossRefPubMedGoogle Scholar
  41. Serrano M, Martínez-Romero D, Zuzunaga M, Riquelme F, Valero D (2007) Calcium, polyamine and gibberellin treatments to improve postharvest fruit quality. In: Dris R, Jain SM (eds) Production practices and quality assessment of food crops. Vol. 4. Postharvest treatment and technology. Kluwer Academic Publishers, Dordrecht, pp 55–68Google Scholar
  42. Shimada A, Ueguchi-Tanaka M, Nakatsu T, Nakajima M, Naoe Y, Ohmiya H et al (2008) Structural basis for gibberellin recognition by its receptor GID1. Nature 456:520–523CrossRefPubMedGoogle Scholar
  43. Sponsel VM, Hedden P (2004) Gibberellin biosynthesis and inactivation. In: Davies PJ (ed) Plant hormones: biosynthesis, signal transduction, action!. Kluwer Academic Publishers, Dordrecht, pp 63–94Google Scholar
  44. Sun TP (2010) Gibberellin-GID1-DELLA: a pivotal regulatory module for plant growth and development. Plant Physiol 154:567–570PubMedCentralCrossRefPubMedGoogle Scholar
  45. Sun TP, Gubler F (2004) Molecular mechanism of gibberellin signalling in plants. Ann Rev Plant Biol 55:197–223CrossRefGoogle Scholar
  46. Thomas SG, Philips AL, Hedden P (1999) Molecular cloning and functional expression of gibberellin 2-oxidases, multifunctional enzymes involved in gibberellin deactivation. Proc Natl Acad Sci USA 96:4698–4703CrossRefPubMedGoogle Scholar
  47. Tyler L, Thomas SG, Hu JH, Dill A, Alonso JM, Ecker JR et al (2004) DELLA proteins and gibberellin-regulated seed germination and floral development in Arabidopsis. Plant Physiol 135:1008–1019PubMedCentralCrossRefPubMedGoogle Scholar
  48. Ueguchi-Tanaka M, Ashikari M, Nakajima M, Itoh H, Katoh E, Kobayashi M et al (2005) GIBBERELLIN INSENSITIVE DWARF1 encodes a soluble receptor for gibberellin. Nature 437:693–698CrossRefPubMedGoogle Scholar
  49. Ueguchi-Tanaka M, Nakajim M, Katoh E, Ohmiya H, Asano K, Saji S et al (2007) Molecular interactions of a soluble gibberellin Receptor, GID1, with a rice DELLA protein, SLR1, and Gibberellin. Plant Cell 19:2140–2155PubMedCentralCrossRefPubMedGoogle Scholar
  50. Vargas AM, Le Cunff L, This P, Ibanez J, de Andres MT (2013) VvGAI1 polymorphisms associate with variation for berry traits in grapevine. Euphytica 191:85–91CrossRefGoogle Scholar
  51. Wang T, Tomic S, Gabdoulline RR, Wade RC (2004) How optimal are the binding energetics of barnase and barstar? Biophys J 87:1618–1630PubMedCentralCrossRefPubMedGoogle Scholar
  52. Wolbang CM, Chandler PM, Smith JJ, Ross JJ (2004) Auxin from the developing inflorescence is required for the biosynthesis of active gibberellins in barley stems. Plant Physiol 134:769–776PubMedCentralCrossRefPubMedGoogle Scholar
  53. Xu YL, Li L, Gage DA, Zeevaart JAD (1999) Feedback regulation of GA5 expression and metabolic engineering of gibberellin levels in Arabidopsis. Plant Cell 11:927–936PubMedCentralPubMedGoogle Scholar
  54. Yamaguchi S (2008) Gibberellin metabolism and its regulation. Ann Rev Plant Biol 59:225–251CrossRefGoogle Scholar
  55. Yamaguchi I, Takahashi N (1976) Change of gibberellin and abscisic acid content during fruit development of Prunus persica. Plant Cell Physiol 17:611–614Google Scholar
  56. Yasumura Y, Crumpton-Taylor M, Fuentes S, Harberd NP (2007) Step-by-step acquisition of the gibberellin-DELLA growth-regulatory mechanism during land-plant evolution. Curr Biol 17:1225–1230CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Islam El-Sharkawy
    • 1
    • 2
  • Sherif Sherif
    • 1
    • 2
  • Walid El Kayal
    • 3
    • 4
  • Abdullah Mahboob
    • 5
  • Kamal Abubaker
    • 1
  • Pratibha Ravindran
    • 6
  • Pavithra A. Jyothi-Prakash
    • 6
  • Prakash P. Kumar
    • 6
  • Subramanian Jayasankar
    • 1
  1. 1.Department of Plant AgricultureUniversity of GuelphVineland StationCanada
  2. 2.Faculty of AgricultureDamanhour UniversityDamanhourEgypt
  3. 3.Department of Biological SciencesUniversity of AlbertaEdmontonCanada
  4. 4.Faculty of AgricultureUniversity of AlexandriaAlexandriaEgypt
  5. 5.Department of Biological SciencesBrock UniversitySt. CatharinesCanada
  6. 6.Department of Biological SciencesNational University of SingaporeSingaporeSingapore

Personalised recommendations