Advertisement

Plant Molecular Biology

, Volume 84, Issue 1–2, pp 111–123 | Cite as

Inducible expression of p50 from TMV for increased resistance to bacterial crown gall disease in tobacco

  • Julia Niemeyer
  • Jonas Ruhe
  • Fabian Machens
  • Dietmar J. Stahl
  • Reinhard Hehl
Article

Abstract

The dominant tobacco mosaic virus (TMV) resistance gene N induces a hypersensitive response upon TMV infection and protects tobacco against systemic spread of the virus. It has been proposed to change disease resistance specificity by reprogramming the expression of resistance genes or their corresponding avirulence genes. To reprogramme the resistance response of N towards bacterial pathogens, the helicase domain (p50) of the TMV replicase, the avirulence gene of N, was linked to synthetic promoters 4D and 2S2D harbouring elicitor-responsive cis-elements. These promoter::p50 constructs induce local necrotic lesions on NN tobacco plants in an Agrobacterium tumefaciens infiltration assay. A tobacco genotype void of N (nn) was transformed with the promoter::p50 constructs and subsequently crossed to NN plants. Nn F1 offspring selected for the T-DNA develop normally under sterile conditions. After transfer to soil, some of the F1 plants expressing the 2S2D::p50 constructs develop spontaneous necrosis. Transgenic Nn F1 plants with 4D::p50 and 2S2D::p50 expressing constructs upregulate p50 transcription and induce local necrotic leasions in an A. tumefaciens infiltration assay. When leaves and stems of Nn F1 offspring harbouring promoter::p50 constructs are infected with oncogenic A. tumefaciens C58, transgenic lines harbouring the 2S2D::p50 construct induce necrosis and completely lack tumor development. These results demonstrate a successful reprogramming of the viral N gene response against bacterial crown gall disease and highlight the importance of achieving tight regulation of avirulence gene expression and the control of necrosis in the presence of the corresponding resistance gene.

Keywords

Disease resistance N gene Necrosis Synthetic promoter Tobacco mosaic virus Transgenic plants 

Notes

Acknowledgments

The technical assistance of Elke Faurie and Erik Hanko with greenhouse work is gratefully acknowledged. We would like to thank Michael Steinert for critically reading the manuscript. This work was supported by the Federal Ministry of Education and Research (BMBF).

References

  1. Abbink TEM, Tjernberg PA, Bol JF, Linthorst HJM (1998) Tobacco mosaic virus helicase domain induces necrosis in N gene-carrying tobacco in the absence of virus replication. Mol Plant Microbe Interact 11:1242–1246CrossRefGoogle Scholar
  2. Abbink TE, de Vogel J, Bol JF, Linthorst HJ (2001) Induction of a hypersensitive response by chimeric helicase sequences of tobamoviruses U1 and Ob in N-carrying tobacco. Mol Plant Microbe Interact 14:1086–1095PubMedCrossRefGoogle Scholar
  3. AbuQamar S, Chen X, Dhawan R, Bluhm B, Salmeron J, Lam S, Dietrich RA, Mengiste T (2006) Expression profiling and mutant analysis reveals complex regulatory networks involved in Arabidopsis response to Botrytis infection. Plant J 48:28–44PubMedCrossRefGoogle Scholar
  4. Bendahmane A, Kanyuka K, Baulcombe DC (1999) The Rx gene from potato controls separate virus resistance and cell death responses. Plant Cell 11:781–792PubMedGoogle Scholar
  5. Bent AF, Mackey D (2007) Elicitors, effectors, and R genes: the new paradigm and a lifetime supply of questions. Annu Rev Phytopathol 45:399–436PubMedCrossRefGoogle Scholar
  6. Bulgarelli D, Biselli C, Collins NC, Consonni G, Stanca AM, Schulze-Lefert P, Vale G (2010) The CC-NB-LRR-type Rdg2a resistance gene confers immunity to the seed-borne barley leaf stripe pathogen in the absence of hypersensitive cell death. PLoS ONE 5:e12599PubMedCrossRefGoogle Scholar
  7. Burch-Smith TM, Schiff M, Caplan JL, Tsao J, Czymmek K, Dinesh-Kumar SP (2007) A novel role for the TIR domain in association with pathogen-derived elicitors. PLoS Biol 5:e68PubMedCrossRefGoogle Scholar
  8. Caplan J, Padmanabhan M, Dinesh-Kumar SP (2008a) Plant NB-LRR immune receptors: from recognition to transcriptional reprogramming. Cell Host Microbe 3:126–135PubMedCrossRefGoogle Scholar
  9. Caplan JL, Mamillapalli P, Burch-Smith TM, Czymmek K, Dinesh-Kumar SP (2008b) Chloroplastic protein NRIP1 mediates innate immune receptor recognition of a viral effector. Cell 132:449–462PubMedCrossRefGoogle Scholar
  10. Chevrot R, Rosen R, Haudecoeur E, Cirou A, Shelp BJ, Ron E, Faure D (2006) GABA controls the level of quorum-sensing signal in Agrobacterium tumefaciens. Proc Natl Acad Sci USA 103:7460–7464PubMedCrossRefGoogle Scholar
  11. Culver JN, Dawson WO (1991) Tobacco mosaic virus elicitor coat protein genes produce a hypersensitive phenotype in transgenic Nicotiana sylvestris plants. Mol Plant Microbe Interact 5:458–463CrossRefGoogle Scholar
  12. de Wit PJGM (1992) Molecular characterization of gene-for-gene systems in plant-fungus interactions and the application of avirulence genes in control of plant pathogens. Annu Rev Phytopathol 30:391–418PubMedCrossRefGoogle Scholar
  13. Deblaere R, Bytebier B, De Greve H, Deboeck F, Schell J, Van Montagu M, Leemans J (1985) Efficient octopine Ti plasmid-derived vectors for Agrobacterium-mediated gene transfer to plants. Nucleic Acids Res 13:4777–4788PubMedCrossRefGoogle Scholar
  14. Dinesh-Kumar SP, Baker BJ (2000) Alternatively spliced N resistance gene transcripts: their possible role in tobacco mosaic virus resistance. Proc Natl Acad Sci USA 97:1908–1913PubMedCrossRefGoogle Scholar
  15. Dinesh-Kumar SP, Whitham S, Choi D, Hehl R, Corr C, Baker B (1995) Transposon tagging of tobacco mosaic virus resistance gene N: its possible role in the TMV-N-mediated signal transduction pathway. Proc Natl Acad Sci USA 92:4175–4180PubMedCrossRefGoogle Scholar
  16. Dinesh-Kumar SP, Tham W-H, Baker BJ (2000) Structure-function analysis of the tobacco mosaic virus resistance gene N. Proc Natl Acad Sci USA 97:14789–14794PubMedCrossRefGoogle Scholar
  17. Erickson FL, Holzberg S, Calderon-Urrea A, Handley V, Axtell M, Corr C, Baker B (1999) The helicase domain of the TMV replicase proteins induces the N-mediated defence response in tobacco. Plant J 18:67–75PubMedCrossRefGoogle Scholar
  18. Fischer U, Dröge-Laser W (2004) Overexpression of NtERF5, a new member of the tobacco ethylene response transcription factor family enhances resistance to tobacco mosaic virus. Mol Plant Microbe Interact 17:1162–1171PubMedCrossRefGoogle Scholar
  19. Grant SR, Fisher EJ, Chang JH, Mole BM, Dangl JL (2006) Subterfuge and manipulation: type III effector proteins of phytopathogenic bacteria. Annu Rev Microbiol 60:425–449PubMedCrossRefGoogle Scholar
  20. Gurr SJ, Rushton PJ (2005) Engineering plants with increased disease resistance: how are we going to express it? Trends Biotechnol 23:283–290PubMedCrossRefGoogle Scholar
  21. Hammond-Kosack KE, Jones JDG (1997) Plant disease resistance genes. Annu Rev Plant Physiol Plant Mol Biol 48:575–607PubMedCrossRefGoogle Scholar
  22. Hammond-Kosack KE, Harrison K, Jones JD (1994) Developmentally regulated cell death on expression of the fungal avirulence gene Avr9 in tomato seedlings carrying the disease-resistance gene Cf-9. Proc Natl Acad Sci USA 91:10445–10449PubMedCrossRefGoogle Scholar
  23. Harris JC, Hrmova M, Lopato S, Langridge P (2011) Modulation of plant growth by HD-Zip class I and II transcription factors in response to environmental stimuli. New Phytol 190:823–837PubMedCrossRefGoogle Scholar
  24. Hehl R, Wingender E (2001) Database-assisted promoter analysis. Trends Plant Sci 6:251–255PubMedCrossRefGoogle Scholar
  25. Hehl R, Faurie E, Hesselbach J, Salamini F, Whitham S, Baker B, Gebhardt C (1999) TMV resistance gene N homologues are linked to Synchytrium endobioticum resistance in potato. Theor Appl Genet 98:379–386CrossRefGoogle Scholar
  26. Hehl R, Steffens NO, Wingender E (2004) Isolation and analysis of gene regulatory sequences. In: Christou P, Klee H (eds) Handbook of plant biotechnology. Wiley, Chichester, pp 81–102Google Scholar
  27. Honée G, Melchers LS, Vleeshouwers VG, van Roekel JS, de Wit PJ (1995) Production of the AVR9 elicitor from the fungal pathogen Cladosporium fulvum in transgenic tobacco and tomato plants. Plant Mol Biol 29:909–920PubMedCrossRefGoogle Scholar
  28. Horsch RB, Fry JE, Hoffmann NL, Eichholtz D, Rogers SG, Fraley RT (1985) A simple and general method for transferring genes into plants. Science 227:1229–1231CrossRefGoogle Scholar
  29. Jaglo KR, Kleff S, Amundsen KL, Zhang X, Haake V, Zhang JZ, Deits T, Thomashow MF (2001) Components of the Arabidopsis C-repeat/dehydration-responsive element binding factor cold-response pathway are conserved in Brassica napus and other plant species. Plant Physiol 127:910–917PubMedCrossRefGoogle Scholar
  30. Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: ß-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907PubMedGoogle Scholar
  31. Kirsch C, Takamiya-Wik M, Schmelzer E, Hahlbrock K, Somssich IE (2000) A novel regulatory element involved in rapid activation of parsley ELI7 gene family members by fungal elicitor or pathogen infection. Mol Plant Pathol 1:243–251PubMedCrossRefGoogle Scholar
  32. Kizis D, Lumbreras V, Pages M (2001) Role of AP2/EREBP transcription factors in gene regulation during abiotic stress. FEBS Lett 498:187–189PubMedCrossRefGoogle Scholar
  33. Komatsu K, Hashimoto M, Ozeki J, Yamaji Y, Maejima K, Senshu H, Himeno M, Okano Y, Kagiwada S, Namba S (2010) Viral-induced systemic necrosis in plants involves both programmed cell death and the inhibition of viral multiplication, which are regulated by independent pathways. Mol Plant Microbe Interact 23:283–293PubMedCrossRefGoogle Scholar
  34. Koschmann J (2009) Identifizierung neuer cis-regulatorischer Elemente durch bioinformatische und experimentelle Analyse Pathogen-induzierbarer Gene. Dissertation, Technische Universität BraunschweigGoogle Scholar
  35. Koschmann J, Machens F, Becker M, Niemeyer J, Schulze J, Bülow L, Stahl DJ, Hehl R (2012) Integration of bioinformatics and synthetic promoters leads to the discovery of novel elicitor-responsive cis-regulatory sequences in Arabidopsis. Plant Physiol 160:178–191PubMedCrossRefGoogle Scholar
  36. Kuang H, Padmanabhan C, Li F, Kamei A, Bhaskar PB, Ouyang S, Jiang J, Buell CR, Baker B (2009) Identification of miniature inverted-repeat transposable elements (MITEs) and biogenesis of their siRNAs in the Solanaceae: new functional implications for MITEs. Genome Res 19:42–56PubMedCrossRefGoogle Scholar
  37. Li F, Pignatta D, Bendix C, Brunkard JO, Cohn MM, Tung J, Sun H, Kumar P, Baker B (2012) MicroRNA regulation of plant innate immune receptors. Proc Natl Acad Sci USA 109:1790–1795PubMedCrossRefGoogle Scholar
  38. Liu Y, Schiff M, Marathe R, Dinesh-Kumar SP (2002) Tobacco Rar1, EDS1 and NPR1/NIM1 like genes are required for N-mediated resistance to tobacco mosaic virus. Plant J 30:415–429PubMedCrossRefGoogle Scholar
  39. Lundberg DS, Lebeis SL, Paredes SH, Yourstone S, Gehring J, Malfatti S, Tremblay J, Engelbrektson A, Kunin V, del Rio TG, Edgar RC, Eickhorst T, Ley RE, Hugenholtz P, Tringe SG, Dangl JL (2012) Defining the core Arabidopsis thaliana root microbiome. Nature 488:86–90PubMedCrossRefGoogle Scholar
  40. Marathe R, Anandalakshmi R, Liu Y, Dinesh-Kumar SP (2002) The tobacco mosaic virus resistance gene N. Mol Plant Pathol 3:167–172PubMedCrossRefGoogle Scholar
  41. Niemeyer J, Machens F, Fornefeld E, Keller-Hüschemenger J, Hehl R (2011) Factors required for the high CO2 specificity of the anaerobically induced maize GapC4 promoter in transgenic tobacco. Plant, Cell Environ 34:220–229CrossRefGoogle Scholar
  42. Niemeyer J, Ruhe J, Machens F, Hehl R (2013) Differential expression of the TMV resistance gene N prevents a hypersensitive response in seeds and during germination. Planta 237:909–915PubMedCrossRefGoogle Scholar
  43. Padgett HS, Watanabe Y, Beachy RN (1997) Identification of the TMV replicase sequence that activates the N gene-mediated hypersensitive response. Mol Plant Microbe Interact 10:709–715CrossRefGoogle Scholar
  44. Reintanz B, Szyroki A, Ivashikina N, Ache P, Godde M, Becker D, Palme K, Hedrich R (2002) AtKC1, a silent Arabidopsis potassium channel alpha-subunit modulates root hair K + influx. Proc Natl Acad Sci USA 99:4079–4084PubMedCrossRefGoogle Scholar
  45. Rushton PJ, Reinstadler A, Lipka V, Lippok B, Somssich IE (2002) Synthetic plant promoters containing defined regulatory elements provide novel insights into pathogen- and wound-induced signaling. Plant Cell 14:749–762PubMedCrossRefGoogle Scholar
  46. Schornack S, Ballvora A, Gürlebeck D, Peart J, Baulcombe D, Ganal M, Baker B, Bonas U, Lahaye T (2004) The tomato resistance protein Bs4 is a predicted non-nuclear TIR-NB-LRR protein that mediates defense responses to severely truncated derivatives of AvrBs4 and overexpressed AvrBs3. Plant J 37:46–60PubMedCrossRefGoogle Scholar
  47. Ueda H, Yamaguchi Y, Sano H (2006) Direct interaction between the tobacco mosaic virus helicase domain and the ATP-bound resistance protein, N factor during the hypersensitive response in tobacco plants. Plant Mol Biol 61:31–45PubMedCrossRefGoogle Scholar
  48. van de Löcht U, Meier I, Hahlbrock K, Somssich IE (1990) A 125 bp promoter fragment is sufficient for strong elicitor-mediated gene activation in parsley. EMBO J 9:2945–2950PubMedGoogle Scholar
  49. Whitham S, Dinesh-Kumar SP, Choi D, Hehl R, Corr C, Baker B (1994) The product of the tobacco mosaic virus resistance gene N: similarity to toll and the interleukin-1 receptor. Cell 78:1101–1115PubMedCrossRefGoogle Scholar
  50. Whitham S, McCormick S, Baker B (1996) The N gene of tobacco confers resistance to tobacco mosaic virus in transgenic tomato. Proc Natl Acad Sci USA 93:8776–8781PubMedCrossRefGoogle Scholar
  51. Wroblewski T, Tomczak A, Michelmore R (2005) Optimization of Agrobacterium-mediated transient assays of gene expression in lettuce, tomato and Arabidopsis. Plant Biotechnol J 3:259–273PubMedCrossRefGoogle Scholar
  52. Zhu Y, Qian W, Hua J (2010) Temperature modulates plant defense responses through NB-LRR proteins. PLoS Pathog 6:e1000844PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Julia Niemeyer
    • 1
  • Jonas Ruhe
    • 1
    • 3
  • Fabian Machens
    • 1
  • Dietmar J. Stahl
    • 2
  • Reinhard Hehl
    • 1
  1. 1.Institut für GenetikTechnische Universität BraunschweigBraunschweigGermany
  2. 2.KWS SAAT AGEinbeckGermany
  3. 3.Max-Planck-Institut für PflanzenzüchtungsforschungKölnGermany

Personalised recommendations