Skip to main content
Log in

Creation and validation of a widely applicable multiple gene transfer vector system for stable transformation in plant

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Multiple gene transfer (MGT) technology has become a powerful tool for basic and applied plant biology research in recent years. Despite some notable successes in obtaining plant lines harbouring multiple transgenes, these methods are still generally unwieldy and costly. We report here a straightforward and cost effective strategy, utilizing commonly available restriction enzymes for the transfer of multiple genes into plants, hence greatly widening the accessibility of MGT. This methodology exploits the specific ‘nested’ arrangement of a pair of isocaudomer restriction enzymes (for example XbaI—AvrII–XbaI) so that through the alternate use of these two enzymes in a reiterative fashion multiple genes/constructs (up to five in this study) could be ‘stacked’ together with ease. In a proof-of-concept experiment, we constructed a plant transformation vector containing three reporter gene expression cassettes flanked by two matrix attachment region sequences. The expression of all three genes was confirmed in transgenic Arabidopsis thaliana. The usefulness of this technology was further validated by the construction of a plant transformation vector containing five transgenes for the production of eicosapentaenoic acid (EPA, C20∆5,8,11,14,17), a polyunsaturated essential fatty acid found in fish oils that is beneficial for health. In addition, we constructed four more vectors, incorporating one seed specific and three promoters conferring constitutive expression. These expression cassettes are flanked by a different isocaudomer pair (AvrII—SpeI–AvrII) and four other unique restriction sites, allowing the exchange of promoters and terminators of choice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

AA:

Arachidonic acid

ALA:

α-Linolenic acid

DHA:

Docosahexaenoic acid

D8:

Δ8 Desaturase gene

D5:

Δ5 Desaturase gene

D15:

Δ15 Desaturase gene

D17:

Δ17 Desaturase gene

E9:

Δ9 Elongase gene

EDA:

Eicosadienoic acid

EPA:

Eicosapentaenoic acid

ETA:

Eicosatetraenoic acid

ETrA:

Eicosatrienoic acid

GFP:

Green fluorescent protein

GUS:

β-Glucuronidase gene

LA:

Linoleic acid

MARs:

Matrix attachment regions

MCS:

Multiple cloning site

MGT:

Multiple gene transfer

MISSA:

Multiple-round in vivo site-specific assembly

MS:

Murashige and Skoog

PEC:

Plant expression cassette

tNOS:

Nos terminator

VLCPUFAs:

Very long chain polyunsaturated fatty acids

ZFNs:

Zinc finger nucleases

35S:

CaMV 35S promoter

References

  • Abbadi A, Domergue F, Bauer J, Napier JA, Welti R, Zähringer U, Cirpus P, Heinz E (2004) Biosynthesis of very-long-chain polyunsaturated fatty acids in transgenic oilseeds: constraints on their accumulation. Plant Cell 16:2734–2748

    Article  PubMed  CAS  Google Scholar 

  • Allen GC, Hall G, Michalowski S, Newman W, Spiker S, Weissinger AK, Thompson WF (1996) High-level transgene expression in plant cells: effects of a strong scaffold attachment region from tobacco. Plant Cell 8:899–913

    PubMed  CAS  Google Scholar 

  • Breyne P, Van Montagu M, Gheysen G (1994) The role of scaffold attachment regions in the structural and functional organization of plant chromatin. Transgenic Res 3:195–202

    Article  PubMed  CAS  Google Scholar 

  • Cao J, Zhao JZ, Tang J, Shelton A, Earle E (2002) Broccoli plants with pyramided cry1Ac and cry1C Bt genes control diamondback moths resistant to Cry1A and Cry1C proteins. Theor Appl Genet 105:258–264

    Article  PubMed  CAS  Google Scholar 

  • Chalfie M, Tu Y, Euskirchen G, Ward WW, Prasher DC (1994) Green fluorescent protein as a marker for gene expression. Science 263:802–805

    Article  PubMed  CAS  Google Scholar 

  • Chen L, Marmey P, Taylor NJ, Brizard JP, Espinoza C, D’Cruz P, Huet H, Zhang S, de Kochko A, Beachy RN (1998) Expression and inheritance of multiple transgenes in rice plants. Nat Biotechnol 16:1060–1064

    Article  PubMed  CAS  Google Scholar 

  • Chen QJ, Zhou HM, Chen J, Wang XC (2006) A Gateway-based platform for multigene plant transformation. Plant Mol Biol 62:927–936

    Article  PubMed  CAS  Google Scholar 

  • Chen QJ, Xie M, Ma XX, Dong L, Chen J, Wang XC (2010) MISSA is a highly efficient in vivo DNA assembly method for plant multiple-gene transformation. Plant Physiol 153:41–51

    Article  PubMed  CAS  Google Scholar 

  • Christensen AH, Sharrock RA, Quail PH (1992) Maize polyubiquitin genes: structure, thermal perturbation of expression and transcript splicing, and promoter activity following transfer to protoplasts by electroporation. Plant Mol Biol 18:675–689

    Article  PubMed  CAS  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  PubMed  CAS  Google Scholar 

  • Depicker A, Stachel S, Dhaese P, Zambryski P, Goodman H (1982) Nopaline synthase: transcript mapping and DNA sequence. J Mol Appl Genet 1:561–573

    PubMed  CAS  Google Scholar 

  • D’Halluin K, De Block M, Denecke J, Janssen J, Leemans J, Reynaerts A, Botterman J (1992) The bar gene as selectable and screenable marker in plant engineering. Methods Enzymol 216:415–426

    Article  PubMed  Google Scholar 

  • Engler C, Kandzia R, Marillonnet S (2008) A one pot, one step, precision cloning method with high throughput capability. PLoS ONE 3:e3647

    Article  PubMed  Google Scholar 

  • Engler C, Gruetzner R, Kandzia R, Marillonnet S (2009) Golden gate shuffling: a one-pot DNA shuffling method based on type IIs restriction enzymes. PLoS ONE 4:e5553

    Article  PubMed  Google Scholar 

  • Fraser TCM, Qi B, Elhussein S, Chatrattanakunchai S, Stobart AK, Lazarus CM (2004) Expression of the Isochrysis C18-delta9 polyunsaturated fatty acid specific elongase component alters Arabidopsis glycerolipid profiles. Plant Physiol 135:859–866

    Article  PubMed  CAS  Google Scholar 

  • Goderis IJWM, De Bolle MFC, François IEJA, Wouters PFJ, Broekaert WF, Cammue BPA (2002) A set of modular plant transformation vectors allowing flexible insertion of up to six expression units. Plant Mol Biol 50:17–27

    Article  PubMed  CAS  Google Scholar 

  • Hamilton CM (1997) A binary-BAC system for plant transformation with high-molecular-weight DNA. Gene 200:107–116

    Article  PubMed  CAS  Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907

    PubMed  CAS  Google Scholar 

  • Kang Y, Zarzycki-Siek J, Walton CB, Norris MH, Hoang TT (2010) Multiple FadD acyl-CoA synthetases contribute to differential fatty acid degradation and virulence in Pseudomonas aeruginosa. PLoS ONE 5:e13557

    Article  PubMed  Google Scholar 

  • Karunanandaa B, Qi Q, Hao M, Baszis SR, Jensen PK, Wong YHH, Jiang J, Venkatramesh M, Gruys KJ, Moshiri F (2005) Metabolically engineered oilseed crops with enhanced seed tocopherol. Metab Eng 7:384–400

    Article  PubMed  CAS  Google Scholar 

  • Krichevsky A, Zaltsman A, King L, Citovsky V (2012) Expression of complete metabolic pathways in transgenic plants. Biotechnol Genet Eng Rev 28:1–13

    Article  PubMed  CAS  Google Scholar 

  • Laliotis G, Bizelis I, Rogdakis E (2010) Comparative approach of the de novo fatty acid synthesis (Lipogenesis) between ruminant and non ruminant mammalian species: from biochemical level to the main regulatory lipogenic genes. Curr Genomics 11:168

    Article  PubMed  CAS  Google Scholar 

  • Lebedenko EN, Birikh KR, Plutalov OV, Berlin YuA (1991) Method of artificial DNA splicing by directed ligation (SDL). Nucleic Acids Res 19:6757–6761

    Article  PubMed  CAS  Google Scholar 

  • Li MZ, Elledge SJ (2005) MAGIC, an in vivo genetic method for the rapid construction of recombinant DNA molecules. Nat Genet 37:311–319

    Article  PubMed  CAS  Google Scholar 

  • Lin L, Liu YG, Xu X, Li B (2003) Efficient linking and transfer of multiple genes by a multigene assembly and transformation vector system. Proc Natl Acad Sci USA 100:5962–5967

    Article  PubMed  CAS  Google Scholar 

  • Liu YG, Shirano Y, Fukaki H, Yanai Y, Tasaka M, Tabata S, Shibata D (1999) Complementation of plant mutants with large genomic DNA fragments by a transformation-competent artificial chromosome vector accelerates positional cloning. Proc Natl Acad Sci USA 96:6535–6540

    Article  PubMed  CAS  Google Scholar 

  • McElroy D, Zhang W, Cao J, Wu R (1990) Isolation of an efficient actin promoter for use in rice transformation. Plant Cell 2:163–171

    PubMed  CAS  Google Scholar 

  • Naqvi S, Farré G, Sanahuja G, Capell T, Zhu C, Christou P (2010) When more is better: multigene engineering in plants. Trends Plant Sci 15:48–56

    Article  PubMed  CAS  Google Scholar 

  • Qi B, Fraser T, Mugford S, Dobson G, Sayanova O, Butler J, Napier JA, Stobart AK, Lazarus CM (2002) Identification of a cDNA encoding a novel C18-Delta(9) polyunsaturated fatty acid-specific elongating activity from the docosahexaenoic acid (DHA)-producing microalga, Isochrysis galbana. FEBS Lett 510:159–165

    Article  PubMed  CAS  Google Scholar 

  • Qi B, Fraser T, Mugford S, Dobson G, Sayanova O, Butler J, Napier JA, Stobart AK, Lazarus CM (2004) Production of very long chain polyunsaturated omega-3 and omega-6 fatty acids in plants. Nat Biotechnol 22:739–745

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Russel DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Spiker S, Thompson WF (1996) Nuclear matrix attachment regions and transgene expression in plants. Plant Physiol 110:15–21

    PubMed  CAS  Google Scholar 

  • Tzfira T, Tian GW, Lacroix B, Vyas S, Li J, Leitner-Dagan Y, Krichevsky A, Taylor T, Vainstein A, Citovsky V (2005) pSAT vectors: a modular series of plasmids for autofluorescent protein tagging and expression of multiple genes in plants. Plant Mol Biol 57:503–516

    Article  PubMed  CAS  Google Scholar 

  • Weber E, Engler C, Gruetzner R, Werner S, Marillonnet S (2011) A modular cloning system for standardized assembly of multigene constructs. PLoS ONE 6:e16765

    Article  PubMed  CAS  Google Scholar 

  • Wu G, Truksa M, Datla N, Vrinten P, Bauer J, Zank T, Cirpus P, Heinz E, Qiu X (2005) Stepwise engineering to produce high yields of very long-chain polyunsaturated fatty acids in plants. Nat Biotechnol 23:1013–1017

    Article  PubMed  CAS  Google Scholar 

  • Xiang C, Han P, Lutziger I, Wang K, Oliver DJ (1999) A mini binary vector series for plant transformation. Plant Mol Biol 40:711–717

    Article  PubMed  CAS  Google Scholar 

  • Xue H, Yang YT, Wu CA, Yang GD, Zhang MM, Zheng CC (2005) TM2, a novel strong matrix attachment region isolated from tobacco, increases transgene expression in transgenic rice calli and plants. Theor Appl Genet 110:620–627

    Article  PubMed  CAS  Google Scholar 

  • Yadav NS, Wierzbicki A, Aegerter M, Caster CS, Perez-Grau L, Kinney AJ, Hitz WD, Booth JR Jr, Schweiger B, Stecca KL (1993) Cloning of higher plant omega-3 fatty acid desaturases. Plant Physiol 103:467–476

    Article  PubMed  CAS  Google Scholar 

  • Ye X, Al-Babili S, Kloeti A, Jing Z, Lucca P, Beyer P, Potrykus I (2000) Engineering the provitamin A (beta-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm. Science 287:303–305

    Article  PubMed  CAS  Google Scholar 

  • Zeevi V, Liang Z, Arieli U, Tzfira T (2012) Zinc finger nuclease and homing endonuclease-mediated assembly of multigene plant transformation vectors. Plant Physiol 158:132–144

    Article  PubMed  CAS  Google Scholar 

  • Zhao JZ, Cao J, Li Y, Collins HL, Roush RT, Earle ED, Shelton AM (2003) Transgenic plants expressing two Bacillus thuringiensis toxins delay insect resistance evolution. Nat Biotechnol 21:1493–1497

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 30970222) and genetically modified organisms breeding major projects of China (Grant No. 009ZX08005-024B).

Conflict of interest

The authors declare competing interest for the pXAX vectors which are subjected to the patent law of China (Patent No. ZL200810160116.6). pXAX1GW and pXAX2GW are also subjected to the GATEWAY® patent law. However, all the vectors could be provided to the scientific community for research purposes only.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xinzheng Li or Baoxiu Qi.

Additional information

Quanxi Sun and Jiang Liu contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, Q., Liu, J., Li, Y. et al. Creation and validation of a widely applicable multiple gene transfer vector system for stable transformation in plant. Plant Mol Biol 83, 391–404 (2013). https://doi.org/10.1007/s11103-013-0096-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-013-0096-2

Keywords

Navigation