Advertisement

Plant Molecular Biology

, Volume 82, Issue 1–2, pp 51–58 | Cite as

Sugarcane Loading Stem Gene promoters drive transgene expression preferentially in the stem

  • Richard L. Moyle
  • Robert G. Birch
Article

Abstract

Promoter regions of six sugarcane Loading Stem Gene (ScLSG) alleles were analyzed using bioinformatic and transgenic approaches. Stable transgene expression analyses, on multiple independent lines per construct, revealed differences between ScLSG promoters in absolute levels and in tissue-selectivity of luciferase reporter activity. Four promoters drove peak expression in the sucrose-loading zone and maintained substantial expression throughout mature stems. One drove a pattern of gradual increase along the stem maturation profile. In general, stem: root expression ratio increased with plant age. The ScLSG5 promoter had the fewest light-enhanced and root-expression motifs in bioinformatic analysis, and drove the highest level and specificity of transgene expression in stems. This indicates the potential to further improve the stem specificity of ScLSG promoter sequences by eliminating enhancers of expression in other tissues. An intron in the 5′UTR was important for expression strength. The ScLSG promoters will be useful for research and biotechnology in sugarcane, where the tailored expression of transgenes in stems is important for enhanced accumulation of sugar or value-added products, and for development as a bioenergy feedstock.

Keywords

Saccharum Stem-expressed promoter Stable transgene expression 

Notes

Acknowledgments

The authors acknowledge the excellent technical assistance of Lilian Chou throughout this project. We thank BSES Limited for access to the Q200 BAC clone library. This research was supported through a collaboration between CSR Sugar Limited (Sucrogen) and The University of Queensland under the Australian Research Council’s Linkage scheme.

Supplementary material

11103_2013_34_MOESM1_ESM.doc (80 kb)
Supplementary material 1 (DOC 80 kb)

References

  1. Basnayake SW, Moyle R, Birch RG (2011) Embryogenic callus proliferation and regeneration conditions for genetic transformation of diverse sugarcane cultivars. Plant Cell Rep 30(3):439–448. doi: 10.1007/s00299-010-0927-4 PubMedCrossRefGoogle Scholar
  2. Basnayake SW, Morgan TC, Wu L, Birch RG (2012) Field performance of transgenic sugarcane expressing isomaltulose synthase. Plant Biotechnol J 10(2):217–225. doi: 10.1111/j.1467-7652.2011.00655.x PubMedCrossRefGoogle Scholar
  3. Benfey PN, Ren L, Chua NH (1990) Combinatorial and synergistic properties of CaMV 35S enhancer subdomains. EMBO J 9(6):1685–1696PubMedGoogle Scholar
  4. Bernard V, Brunaud V, Lecharny A (2010) TC-motifs at the TATA-box expected position in plant genes: a novel class of motifs involved in the transcription regulation. BMC Genomics 11:166. doi: 10.1186/1471-2164-11-166 PubMedCrossRefGoogle Scholar
  5. Casu RE, Dimmock CM, Chapman SC, Grof CPL, McIntyre CL, Bonnett GD, Manners JM (2004) Identification of differentially expressed transcripts from maturing stem of sugarcane by in silico analysis of stem expressed sequence tags and gene expression profiling. Plant Mol Biol 54(4):503–517PubMedCrossRefGoogle Scholar
  6. Christensen AH, Sharrock RA, Quail PH (1992) Maize polyubiquitin genes: structure, thermal perturbation of expression and transcript splicing, and promoter activity following transfer to protoplasts by electroporation. Plant Mol Biol 18(4):675–689PubMedCrossRefGoogle Scholar
  7. Damaj MB, Kumpatla SP, Emani C, Beremand PD, Reddy AS, Rathore KS, Buenrostro-Nava MT, Curtis IS, Thomas TL, Mirkov TE (2010) Sugarcane DIRIGENT and O-methyltransferase promoters confer stem-regulated gene expression in diverse monocots. Planta 231(6):1439–1458. doi: 10.1007/s00425-010-1138-5 PubMedCrossRefGoogle Scholar
  8. Donald RGK, Cashmore AR (1990) Mutation of either G box or I box sequences profoundly affects expression from the Arabidopsis rbcS-1A promoter. EMBO J 9(6):1717–1726PubMedGoogle Scholar
  9. Gapper NE, Coupe SA, McKenzie MJ, Scott RW, Christey MC, Lill RE, McManus MT, Jameson PE (2005) Senescence-associated down-regulation of 1-aminocyclopropane-1-carboxylate (ACC) oxidase delays harvest-induced senescence in broccoli. Funct Plant Biol 32(10):891–901. doi: 10.1071/Fp05076 CrossRefGoogle Scholar
  10. Gilmartin PM, Sarokin L, Memelink J, Chua NH (1990) Molecular light switches for plant genes. Plant Cell 2(5):369–378PubMedGoogle Scholar
  11. Groenewald JH, Botha FC (2008) Down-regulation of pyrophosphate: fructose 6-phosphate 1-phosphotransferase (PFP) activity in sugarcane enhances sucrose accumulation in immature internodes. Transgenic Res 17(1):85–92. doi: 10.1007/s11248-007-9079-x PubMedCrossRefGoogle Scholar
  12. Haralampidis K, Milioni D, Rigas S, Hatzopoulos P (2002) Combinatorial interaction of cis elements specifies the expression of the Arabidopsis AtHsp90-1 gene. Plant Physiol 129(3):1138–1149. doi: 10.1104/Pp.004044 PubMedCrossRefGoogle Scholar
  13. Higo K, Ugawa Y, Iwamoto M, Korenaga T (1999) Plant cis-acting regulatory DNA elements (PLACE) database. Nucleic Acids Res 27(1):297–300. doi: 10.1093/nar/27.1.297 PubMedCrossRefGoogle Scholar
  14. Hofig KP, Moyle RL, Putterill J, Walter C (2003) Expression analysis of four Pinus radiata male cone promoters in the heterologous host Arabidopsis. Planta 217(6):858–867. doi: 10.1007/s00425-003-1057-9 PubMedCrossRefGoogle Scholar
  15. Hofig KP, Moller R, Donaldson L, Putterill J, Walter C (2006) Towards male sterility in Pinus radiata-a stilbene synthase approach to genetically engineer nuclear male sterility. Plant Biotechnol J 4(3):333–343. doi: 10.1111/j.1467-7652.2006.00185.x PubMedCrossRefGoogle Scholar
  16. Lam E, Chua NH (1989) ASF-2: a factor that binds to the cauliflower mosaic virus 35S promoter and a conserved GATA motif in Cab promoters. Plant Cell 1(12):1147–1156. doi: 10.1105/tpc.1.12.11471/12/1147 PubMedGoogle Scholar
  17. Le Gourrierec J, Li YF, Zhou DX (1999) Transcriptional activation by Arabidopsis GT-1 may be through interaction with TFIIA-TBP-TATA complex. Plant J 18(6):663–668PubMedCrossRefGoogle Scholar
  18. Lescot M, Dehais P, Thijs G, Marchal K, Moreau Y, Van de Peer Y, Rouze P, Rombauts S (2002) PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res 30(1):325–327PubMedCrossRefGoogle Scholar
  19. Luehrsen KR, de Wet JR, Walbot V (1992) Transient expression analysis in plants using firefly luciferase reporter gene. Methods Enzymol 216:397–414PubMedCrossRefGoogle Scholar
  20. Mascarenhas D, Mettler IJ, Pierce DA, Lowe HW (1990) Intron-mediated enhancement of heterologous gene-expression in maize. Plant Mol Biol 15(6):913–920PubMedCrossRefGoogle Scholar
  21. Moyle RL, Birch RG (2012) Diversity of sequences and expression patterns among alleles of a sugarcane loading-stem gene. Theor Appl Genet (revision submitted)Google Scholar
  22. Mudge SR, Osabe K, Casu RE, Bonnett GD, Manners JM, Birch RG (2009) Efficient silencing of reporter transgenes coupled to known functional promoters in sugarcane, a highly polyploid crop species. Planta 229(3):549–558. doi: 10.1007/s00425-008-0852-8 PubMedCrossRefGoogle Scholar
  23. Mudge SR, Basnayake SW, Moyle RL, Osabe K, Graham MW, Morgan TE, Birch RG (2013) Mature-stem expression of a silencing-resistant sucrose isomerase gene drives isomaltulose accumulation to high levels in sugarcane. Plant Biotechnol J. doi: 10.1111/pbi.12038 PubMedGoogle Scholar
  24. O’Connor TR, Dyreson C, Wyrick JJ (2005) Athena: a resource for rapid visualization and systematic analysis of Arabidopsis promoter sequences. Bioinformatics 21(24):4411–4413. doi: 10.1093/bioinformatics/bti714 PubMedCrossRefGoogle Scholar
  25. Odell JT, Nagy F, Chua NH (1985) Identification of DNA sequences required for activity of the cauliflower mosaic virus 35S promoter. Nature 313(6005):810–812PubMedCrossRefGoogle Scholar
  26. Potenza C, Aleman L, Sengupta-Gopalan C (2004) Targeting transgene expression in research, agricultural, and environmental applications: promoters used in plant transformation. Vitro Cell Dev Biol Plant 40:1–22CrossRefGoogle Scholar
  27. Prestridge DS (1991) SIGNAL SCAN: a computer program that scans DNA sequences for eukaryotic transcriptional elements. Comput Appl Biosci 7(2):203–206PubMedGoogle Scholar
  28. Rae AL, Grof CPL, Casu RE, Bonnett GD (2005) Sucrose accumulation in the sugarcane stem: pathways and control points for transport and compartmentation. Field Crop Res 92(2–3):159–168. doi: 10.1016/j.fcr.2005.01.027 CrossRefGoogle Scholar
  29. Rieping M, Schoffl F (1992) Synergistic effect of upstream sequences, CCAAT Box Elements, and HSE sequences for enhanced expression of chimeric heat shock genes in transgenic tobacco. Mol Gen Genet 231(2):226–232PubMedGoogle Scholar
  30. Terzaghi WB, Cashmore AR (1995) Light-regulated transcription. Annu Rev Plant Phys 46:445–474. doi: 10.1146/annurev.pp.46.060195.002305 CrossRefGoogle Scholar
  31. Van Dillewijn C (1952) Botany of sugarcane. Chronica Botanica Co, WalthamGoogle Scholar
  32. Vaughn T, Cavato T, Brar G, Coombe T, DeGooyer T, Ford S, Groth M, Howe A, Johnson S, Kolacz K, Pilcher C, Purcell J, Romano C, English L, Pershing J (2005) A method of controlling corn rootworm feeding using a Bacillus thuringiensis protein expressed in transgenic maize. Crop Sci 45(3):931–938. doi: 10.2135/cropsci2004.0304 CrossRefGoogle Scholar
  33. Winichayakul S, Moyle RL, Coupe SA, Davies KM, Farnden KJF (2004) Analysis of the asparagus (Asparagus officinalis) asparagine synthetase gene promoter identifies evolutionarily conserved cis-regulatory elements that mediate Suc-repression. Funct Plant Biol 31(1):63–72. doi: 10.1071/Fp03179 CrossRefGoogle Scholar
  34. Zhou DX (1999) Regulatory mechanism of plant gene transcription by GT-elements and GT-factors. Trends Plant Sci 4(6):210–214PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Hines Plant Science BuildingThe University of QueenslandBrisbaneAustralia

Personalised recommendations