Advertisement

Plant Molecular Biology

, Volume 81, Issue 1–2, pp 119–138 | Cite as

Trichome-specific expression of the amorpha-4,11-diene 12-hydroxylase (cyp71av1) gene, encoding a key enzyme of artemisinin biosynthesis in Artemisia annua, as reported by a promoter-GUS fusion

  • Hongzhen Wang
  • Junli Han
  • Selvaraju Kanagarajan
  • Anneli Lundgren
  • Peter E. Brodelius
Article

Abstract

Artemisinin derivatives are effective anti-malarial drugs. In order to design transgenic plants of Artemisia annua with enhanced biosynthesis of artemisinin, we are studying the promoters of genes encoding enzymes involved in artemisinin biosynthesis. A 1,151 bp promoter region of the cyp71av1 gene, encoding amorpha-4,11-diene 12-hydroxylase, was cloned. Alignment of the cloned promoter and other cyp71av1 promoter sequences indicated that the cyp71av1 promoter may be different in different A. annua varieties. Comparison to the promoter of amorpha-4,11-diene synthase gene showed a number of putative cis-acting regulatory elements in common, suggesting a co-regulation of the two genes. The cyp71av1 promoter sequence was fused to the β-glucuronidase (GUS) reporter gene and two varieties of A. annua and Nicotiana tabacum were transformed. In A. annua, GUS expression was exclusively localized to glandular secretory trichomes (GSTs) of leaf primordia and top expanded leaves. In older leaves, there is a shift of expression to T-shaped trichomes (TSTs). Only TSTs showed GUS staining in lower leaves and there is no GUS staining in old leaves. GUS expression in flower buds was specifically localized to GSTs. The recombinant promoter carries the cis-acting regulatory elements required for GST-specific expression. The cyp71av1 promoter shows activity in young tissues. The recombinant promoter was up to 200 times more active than the wild type promoter. GUS expression in transgenic N. tabacum was localized to glandular heads. Transcript levels were up-regulated by MeJA. Wound responsiveness experiment showed that the cyp71av1 promoter does not appear to play any role in the response of A. annua to mechanical stress.

Keywords

Agrobacterium tumefaciens Amorpha-4,11-diene 12-hydroxylase Artemisia annua Artemisinin biosynthesis β-glucuronidase Gene regulation Promoter activity Stable transformation 

References

  1. Aftab T, Khan MMA, Idrees M, Naeem M, Singh M, Ram M (2010) Stimulation of crop productivity, photosynthesis and artemisinin production in Artemisia annua L. by triacontanol and gibberellic acid application. J Plant Interact 5:273–281. doi: 10.1080/17429141003647137 CrossRefGoogle Scholar
  2. Angelova Z, Georgiev S, Roos W (2006) Elicitation of plants. Biotechnol Biotechnol Eq 20:72–83Google Scholar
  3. Baldi A, Dixit VK (2008) Yield enhancement strategies for artemisinin production by suspension cultures of Artemisia annua. Biores Technol 99:4609–4614. doi: 10.1016/j.biortech.2007.06.061 CrossRefGoogle Scholar
  4. Banyai W, Mii M, Supaibulwatana K (2011) Enhancement of artemisinin content and biomass in Artemisia annua by exogenous GA3 treatment. Plant Growth Regul 63:45–54. doi: 10.1007/s10725-010-9510-9 CrossRefGoogle Scholar
  5. Boter M, Ruiz-Rivero O, Abdeen A, Prat S (2004) Conserved MYC transcription factors play a key role in jasmonate signaling both in tomato and Arabidopsis. Genes Dev 18:1577–1591. doi: 10.1101/gad.297704 PubMedCrossRefGoogle Scholar
  6. Bouwmeester HJ, Wallaart TE, Janssen MH, van Loo B, Jansen BJ, Posthumus MA, Schmidt CO, de Kraker JW, Konig WA, Franssen MC (1999) Amorpha-4, 11-diene synthase catalyses the first probable step in artemisinin biosynthesis. Phytochemistry 52:843–854. doi: 10.1016/S0031-9422(99)00206-X PubMedCrossRefGoogle Scholar
  7. Brown GD, Sy LK (2004) In vivo transformations of dihydroartemisinic acid in Artemisia annua plants. Tetrahedron 60:1139–1159. doi: 10.1016/j.tet.2003.11.070 CrossRefGoogle Scholar
  8. Brown GD, Sy LK (2007) In vivo transformations of artemisinic acid in Artemisia annua plants. Tetrahedron 63:9548–9566. doi: 10.1016/j.tet.2007.06.062 CrossRefGoogle Scholar
  9. Caretto S, Quarta A, Durante M, Nisi R, De Paolis A, Blando F, Mita G (2011) Methyl jasmonate and miconazole differently affect arteminisin production and gene expression in Artemisia annua suspension cultures. Plant Biol 13:51–58. doi: 10.1111/j.1438-8677.2009.00306.x PubMedCrossRefGoogle Scholar
  10. Chen JL, Fang HM, Ji YP, Pu GB, Guo YW, Huang LL, Du ZG, Liu BY, Ye HC, Li GF, Wang H (2011) Artemisinin biosynthesis enhancement in transgenic Artemisia annua plants by downregulation of the β-caryophyllene synthase gene. Plant Med 77:1759–1765. doi: 10.1055/s-0030-1271038 Google Scholar
  11. Covello PS, Teoh KH, Polichuk DR (2007) Function genomic and biosynthesis of artemisinin. Phytochemistry 68:1864–1871. doi: 10.1016/j.phytochem.2007.02.016 PubMedCrossRefGoogle Scholar
  12. Deyholos MK, Sieburth LE (2000) Separable whorl-specific expression and negative regulation by enhancer elements within the AGAMOUS second intron. Plant Cell 12:1799–1810. doi: 10.1105/tpc.12.10.1799 PubMedGoogle Scholar
  13. Duke MV, Paul RN, Elsohly HN, Sturtz G, Duke SO (1994) Localization of artemisinin and artemisitene in foliar tissues of glanded and glandless biotypes of Artemisia annua L. Int J Plant Sci 155:365–372. doi: 10.1086/297173 CrossRefGoogle Scholar
  14. Fütterer J, Gisel A, Iglesias V, Klöti A, Kost B, Mittelsten Scheid O, Neuhaus G, Neuhaus-Url G, Schrott M, Shillito R, Spangenberg G, Wang ZY (1995) Standard molecular techniques for the analysis of transgenic plants”. In: Potrykus I, Spangenberg G (eds) Gene transfer to plants. Springer, Berlin, pp 215–263Google Scholar
  15. Guom X-X, Yang X-Q, Yang R-Y, Zeng Q-P (2010) Salicylic acid and methyl jasmonate but not Rose Bengal enhance artemisinin production through invoking burst of endogenous singlet oxygen. Plant Sci 178:390–397. doi: 10.1016/j.plantsci.2010.01.014 CrossRefGoogle Scholar
  16. Han JL, Liu BY, Ye HC, Wang H, Li Z-Q, Li G-F (2006) Effects of overexpression of the endogenous farnesyl diphosphate synthase on the artemisinin content in Artemisia annua L. J Integrat Plant Biol 48:482–487. doi: 10.1111/j.1744-7909.2006.00208.x CrossRefGoogle Scholar
  17. Hobo T, Asada M, Kowyama Y, Hattori T (1999) ACGT-containing abscisic acid response element (ABRE) and coupling element 3 (CE3) are functionally equivalent. Plant J 19:679–689. doi: 10.1046/j.1365-313x.1999.00565.x PubMedCrossRefGoogle Scholar
  18. Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907PubMedGoogle Scholar
  19. Jing F, Zhang L, Li M, Tang Y, Wang Y, Wang Y, Wang Q, Pan Q, Wang G, Tang K (2009) Abscisic acid (ABA) treatment increases artemisinin content in Artemisia annua by enhancing the expression of genes in artemisinin biosynthetic pathway. Biologia 64:319–323. doi: 10.2478/s11756-009-0040-8 CrossRefGoogle Scholar
  20. Kim J, Kim H-Y (2006) Molecular characterization of a bHLH transcription factor involved in Arabidopsis abscisic acid-mediated response. Biochim Biophys Acta 1759:191–194. doi: 10.1016/j.bbaexp.2006.03.002 PubMedCrossRefGoogle Scholar
  21. Lei C, Ma D, Pu G, Qiu X, Du Z, Wang H, Li G, Ye H, Liu B (2011) Foliar application of chitosan activates artemisinin biosynthesis in Artemisia annua L. Ind Crop Prod 33:176–182. doi: 10.1016/j.indcrop.2010.10.001 CrossRefGoogle Scholar
  22. Li LF, Rui YY, Xue QY, Xiao MZ, Wen JL, Qing PZ (2009) Synergistic re-channeling of mevalonate pathway for enhanced artemisinin production in transgenic Artemisia annua. Plant Sci 177:57–67. doi: 10.1016/j.plantsci.2009.03.014 CrossRefGoogle Scholar
  23. Liu DH, Zhang LD, Li CX, Yang K, Wang YY, Sun XF, Tang K (2010) Effect of wounding on gene expression involved in artemisinin biosynthesis and artemisinin production in Artemisia annua. Russ J Plant Physiol 57:882–886. doi: 10.1134/S102144371006018X CrossRefGoogle Scholar
  24. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-∆∆Ct method. Methods 25:402–408. doi: 10.1006/meth.2001.1262 PubMedCrossRefGoogle Scholar
  25. Lommen WJM, Schenk E, Bouwmeester HJ, Verstappen FWA (2006) Trichome dynamics and artemisinin accumulation during development and senescence of Artemisia annua leaves. Planta Med 72:336–345. doi: 10.1055/s-2005-916202 PubMedCrossRefGoogle Scholar
  26. Lommen WJM, Elzinga S, Verstappen FWA, Bouwmeester HJ (2007) Artemisinin and sesquiterpene precursors in dead and green leaves of Artemisia annua L. crops. Planta Med 73:1133–1139. doi: 10.1055/s-2007-981567 PubMedCrossRefGoogle Scholar
  27. Lommen WJM, Bouwmeester HJ, Schenk E, Verstappen FWA, Elzinga S, Struik PC (2008) Modelling processes determining and limiting the production of secondary metabolites during crop growth: the example of the antimalarial artemisinin produced in Artemisia annua. Acta Hort 765:87–94Google Scholar
  28. Ma D, Pu G, Lei C, Ma L, Wang H, Guo Y, Chen J, Du Z, Wang H, Li G, Ye H, Liu B (2009) Isolation and characterization of AaWRKY1, an Artemisia annua transcription factor that regulates the amorpha-4,11-diene synthase gene, a key gene of artemisinin biosynthesis. Plant Cell Phys 50:2146–2161. doi: 10.1093/pcp/pcp149 CrossRefGoogle Scholar
  29. Maes L, van Nieuwerburgh FCW, Zhang Y, Reed DW, Pollier J, Vande Casteele SRF, Inze D, Covello PS, Deforce DLD, Goossens A (2011) Dissection of the phytohormonal regulation of trichome formation and biosynthesis of the antimalarial compound artemisinin in Artemisia annua plants. New Phytol 189:176–189. doi: 10.1111/j.1469-8137.2010.03466.x PubMedCrossRefGoogle Scholar
  30. Mascarenhas D, Mettler IJ, Pierce DA, Lowe HW (1990) Intron-mediated enhancement of heterologous gene expression in maize. Plant Mol Biol 15:913–920. doi: 10.1007/BF00039430 PubMedCrossRefGoogle Scholar
  31. Mercke P, Bengtsson M, Bouwmeester HJ, Posthumus MA, Brodelius PE (2000) Molecular cloning, expression, and characterization of amorpha-4,11-diene synthase, a key enzyme of artemisinin biosynthesis in Artemisia annua L. Arch Biochem Biophys 381:173–180. doi: 10.1006/abbi.2000.1962 PubMedCrossRefGoogle Scholar
  32. Miller JN, Miller JC (2010) Statistics and chemometrics for analytical chemistry, 6th edn. Prentice Hall, UKGoogle Scholar
  33. Miyamoto K, Shimizu T, Lin F, Sainsbury F, Thuenemann E, Lomonossoff G, Nojiri H, Yamane H, Okada K (2012) Identification of an E-box motif responsible for the expression of jasmonic acid-induced chitinase gene OsChia4a in rice. J Plant Physiol 169:621–627Google Scholar
  34. Nafis T, Akmal M, Ram M, Alam P, Ahlawat S, Mohd A, Abdin MZ (2011) Enhancement of artemisinin content by constitutive expression of the HMG-CoA reductase gene in high-yielding strain of Artemisia annua L. Plant Biotechnol Rep 5:53–60. doi: 10.1007/s11816-010-0156-x CrossRefGoogle Scholar
  35. Narusaka Y, Nakashima K, Shinwari ZK, Sakuma Y, Furihata T, Abe H, Narusaka M, Shinozaki K, Yamaguchi-Shinozaki K (2003) Interaction between two cis-acting elements, ABRE and DRE, in ABA-dependent expression of Arabidopsis rd29A gene in response to dehydration and high-salinity stresses. Plant J 34:137–148. doi: 10.1046/j.1365-313X.2003.01708.x PubMedCrossRefGoogle Scholar
  36. Olofsson L, Lundgren A, Brodelius PE (2012) Trichome isolation with and without fixation using laser microdissection and pressure catapulting followed by RNA amplification: expression of genes of terpene metabolism in apical and sub-apical trichome cells of Artemisia annua L. Plant Sci 183:9–13. doi: 10.1016/j.plantsci.2011.10.019 PubMedCrossRefGoogle Scholar
  37. Olsson ME, Olofsson LM, Lindahl A-L, Lundgren A, Brodelius M, Brodelius PE (2009) Localization of enzymes of artemisinin biosynthesis to the apical cells of glandular secretory trichomes of Artemisia annua L. Phytochemistry 70:1123–1128. doi: 10.1016/j.phytochem.2009.07.009 PubMedCrossRefGoogle Scholar
  38. Polichuk D, Teoh K, Zhang Y, Ellens KW, Reed DW, Covello PS (2010) Nucleotide sequence encoding an alcohol dehydrogenase from Artemisia annua and uses therof. Patent Application WO/2010/012074Google Scholar
  39. Pu GB, Ma DM, Chen JL, Ma LQ, Wang H, Li GF, Ye HC, Liu BY (2009) Salicylic acid activates artemisinin biosynthesis in Artemisia annua L. Plant Cell Rep 28:1127–1135. doi: 10.1007/s00299-009-0713-3 Google Scholar
  40. Putalun W, Luealon W, De-Eknamkul W, Tanaka H, Shoyama Y (2007) Improvement of artemisinin production by chitosan in hairy root cultures of Artemisia annua L. Biotechnol Lett 29:1143–1146. doi: 10.1007/s10529-007-9368-8 PubMedCrossRefGoogle Scholar
  41. Rathore D, McCutchan TF, Sullivan M, Kumar S (2005) Antimalarial drugs: current status and new developments. Expert Opin Investig Drugs 14:871–883PubMedCrossRefGoogle Scholar
  42. Rushton PJ, Somssich IE, Ringler P, Shen QJ (2010) WRKY transcription factors. Trends Plant Sci 15:247–258. doi: 10.1016/j.tplants.2010.02.006 PubMedCrossRefGoogle Scholar
  43. Sawant SV, Singh PK, Gupta SK, Madnala R, Tuli R (1999) Conserved nucleotide sequences in highly expressed genes in plants. J Genet 78:123–131CrossRefGoogle Scholar
  44. Shen Q, Ho TH (1995) Functional dissection of an abscisic acid (ABA)-inducible gene reveals two independent ABA-responsive complexes each containing a G-box and a novel cis-acting element. Plant Cell 7:295–307. doi: 10.1105/tpc.7.3.295 PubMedGoogle Scholar
  45. Shen Q, Zhang P, Ho TH (1996) Modular nature of abscisic acid (ABA) response complexes: composite promoter units that are necessary and sufficient for ABA induction of gene expression in barley. Plant Cell 8:1107–1119. doi: 10.1105/tpc.8.7.1107 PubMedGoogle Scholar
  46. Teoh KH, Polichuk DR, Reed DW, Nowak G, Covello PS (2006) Artemisia annua L. (Asteraceae) trichome-specific cDNAs reveal CYP71AV1, a cytochrome P450 with a key role in the biosynthesis of the antimalarial sesquiterpene lactone artemisinin. FEBS Lett 580:1411–1416. doi: 10.1016/j.febslet.2006.01.065 PubMedCrossRefGoogle Scholar
  47. Teoh KH, Polichuk DR, Reed DW, Covello PS (2009) Molecular cloning of an aldehyde dehydrogenase implicated in artemisinin biosynthesis in Artemisia annua. Botany 87:635–642. doi: 10.1139/B09-032 CrossRefGoogle Scholar
  48. Wang Y, Yang K, Jing F, Li M, Deng T, Huang R, Wang B, Wang G, Sun X, Tang KX (2011a) Cloning and characterization of trichome specific promoter of CYP71AV1 gene involved in artemisinin biosynthesis in Artemisia annua L. Mol Biol 45:751–758. doi: 10.1134/S0026893311040145 CrossRefGoogle Scholar
  49. Wang H, Olofsson L, Lundgren A, Brodelius PE (2011b) Trichome-specific expression of amorpha-4,11-diene synthase, a key enzyme of artemisinin biosynthesis in Artemisia annua, as reported by a promoter-GUS fusion. Am J Plant Sci 2:619–628. doi: 10.4236/ajps.2011.24073 CrossRefGoogle Scholar
  50. Wu W, Yuan M, Zhang Q, Zhu Y, Yong L, Wang W, Oi Y, Guo D (2011) Chemotype-dependent metabolic response to methyl jasmonate elicitation in Artemisia annua. Planta Med 77:1048–1053. doi: 10.1055/s-0030-1250744 PubMedCrossRefGoogle Scholar
  51. Yu ZX, Li JX, Yang CQ, Hu WL, Wang LJ, Chen XY (2012) The jasmonate-responsive AP2/ERF transcription factors AaERF1 and AaERF2 positively regulate artemisinin biosynthesis in Artemisia annua L. Mol Plant 5:353–365Google Scholar
  52. Zhang YS, Ye HC, Liu BY, Wangand H, Li GF (2005) Exogenous GA3 and flowering induce the conversion of artemisinic acid to artemisinin in Artemisia annua plants. Russ J Plant Physiol 52:58–62. doi: 10.1007/s11183-005-0009-6 CrossRefGoogle Scholar
  53. Zhang Y, Teoh KH, Reed DW, Maes L, Goossens A, Olson DJ, Ross AR, Covello PS (2008) The molecular cloning of artemisinic aldehyde Δ11(13) reductase and its role in glandular trichome-dependent biosynthesis of artemisinin in Artemisia annua. J Biol Chem 283:21501–21508. doi: 10.1074/jbc.M803090200 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Hongzhen Wang
    • 1
  • Junli Han
    • 1
  • Selvaraju Kanagarajan
    • 1
  • Anneli Lundgren
    • 1
  • Peter E. Brodelius
    • 1
  1. 1.School of Natural SciencesLinnaeus UniversityKalmarSweden

Personalised recommendations